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Optimal velocity (OV) car-following models give with few parameters stable stop-and -go waves propagating
like in empirical data. Unfortunately, classical OV models locally oscillate with vehicles colliding and moving
backward. In order to solve this problem, the models have to be completed with additional parameters. This
leads to an increase of the complexity. In this paper, a new OV model with no additional parameters is defined.
For any value of the inputs, the model is intrinsically asymmetric and collision-free. This is achieved by using a
first-order ordinary model with two predecessors in interaction, instead of the usual inertial delayed first-order
or second-order models coupled with the predecessor. The model has stable uniform solutions as well as various
stable stop-and -go patterns with bimodal distribution of the speed. As observable in real data, the modal speed
values in congested states are not restricted to the free flow speed and zero. They depend on the form of the OV
function. Properties of linear, concave, convex, or sigmoid speed functions are explored with no limitation due
to collisions.
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I. INTRODUCTION

Observations of congested road traffic flows present stable
propagation of stop-and-go waves [1–3]. Such waves are
observed on highways or during experiments (see, for instance,
Ref. [4]), where the disturbance due to the infrastructure
cannot explain their presence. They are also empirical fea-
tures of pedestrian [5] as well as bicycle traffic [6]. This
collective phenomenon is typical for the human driving.
Stop-and-go waves are characterized by bimodal distributions
of the velocity [7] and are observed within traffic [8,9] and
pedestrian flows [5]. The modal speed values seem to depend
on the density. Nowadays, the available empirical studies
or theoretical investigations are not enough to explain the
phenomena in sufficient detail.

Many approaches have been developed to understand
road traffic flow (see, for instance, Refs. [10,11]). Traffic
waves and instability were the topics of the pioneering
papers in the 1950s and early 1960s [12]. The modeling
of nonlinear traffic waves, instability, hysteresis, or more
generally nonuniform solutions is one central point of the
traffic research [13,14]. It is investigated with second-order,
or higher-order, macroscopic models [15,16] as well as with
kinetic mesoscopic ones [17,18]. Most of the studies are done
with microscopic models. Traffic waves are the main field of
cellular automaton models [19–21]. They are also described
with delayed first-order or second-order continuous systems
through stability analysis [3] or mapping to solitons [22].

One of the best investigated models is the optimal velocity
(OV). The first OV models are car-following microscopic by
delayed first-order [23] and second-order equations [24]. They
are solely based on the optimal (or equilibrium) speed function
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and the reaction (or relaxation) time parameter. There exist
microscopic discrete OV models [21,25] and macroscopic
second-order [15,26] or hydrodynamical ones [27,28]. The
OV models are simple, with few parameters that can be
estimated from traffic data. Despite their simplicity, the
obtained dynamics are rich and describe many empirical
features [29,30].

The OV models have stationary uniform solutions that can
be unstable. Yet, obtaining realistic nonuniform solutions with
stop-and-go waves is not straightforward. Classical OV models
can locally oscillate, leading to collisions or negative speed.
These fortuitous colliding behaviors are different from the
modeling of accidents (see Ref. [31]). They are unrealistic
and have to be controlled. Unfortunately, collision-free stop-
and-go patterns are limited to a small range of inputs with
OV models. Only particular sigmoid optimal speed functions
give collision-free solutions with traffic waves and multibunch
phenomena [24,32,33]. This is due to the use of models with
inertia (delayed first-order or second-order models), for which
the vehicles do not monotonically stop for all initial conditions
and values of the parameters. The occurrence of collisions
prevents one from describing the space phase of the OV models
well and restricts the use and calibration. These deficiencies are
clearly established and have been debated in the literature [34–
37].

Extensions of the OV models allow one to solve the prob-
lems (see, for instance, the microscopic models in Refs. [38,39]
or the macroscopic models in Refs. [40,41]), but with the
drawback of increasing the number of model parameters. At
present, there is no consensus for one or another extended
model. It is also unclear whether a higher modeling complexity
is necessary to obtain realistic stop-and-go waves with a large
range of parameters.

In this article, we develop a new generic and minimal
OV model intrinsically asymmetric and collision-free for
any value of the parameters. This is achieved by using
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a continuous first-order ordinary equation system with no
inertia and considering two predecessors for the interaction.
The model has stationary uniform solutions with the same
stability condition as classical models, as well as various
stable nonuniform solutions (limit-cycle) with collision-free
stop-and-go patterns. We propose to explore the space phase
of the model analytically and by simulation. The article is
organized as follows. In the Sec. II, we discuss classical OV
models regarding the difficulties in combining collision-free
property with the instability of a uniform solution. Then,
the new OV model is defined. Section III concerns the
stability analysis of the model. In Sec. IV, the nonuniform
solutions, especially the distribution of the vehicle speed,
are described by simulation according to the form of the
parameters. A summary and conclusions are presented in
Sec. V.

II. OPTIMAL VELOCITY MODELS

A. Classical models

The OV models are set by an optimal (or equilibrium) speed
function V depending on the spacing (the difference of the
central positions of a considered vehicle and the predecessor).
The function describes how drivers regulate their speed. It is
helpful to describe the dynamic of traffic systems but it is not
derived from fundamental physical laws. On the one side, it
contains strong physical constraints like the volume exclusion
or finite desired speed, but it also contains factors determined
by the perception and behavior of drivers. Classical modelings
assume V such that

V (d) = 0, d � �, and V (d) � 0, d > �, (1)

with finite limit value (the desired speed). � > 0 is the length
of the vehicle. The most basic OV model [42] is of the first
order:

ẋn(t) = V (�xn(t)), (2)

where xn(t) is the position of the considered vehicle and
�xn(t) = xn+1(t) − xn(t) is the distance spacing of the vehicle
n at time t (n + 1 is the predecessor of the vehicle n, see
Fig. 1).�xn(t) − � is the distance gap of the vehicle n (the
physical free distance with the predecessor). More realistic
dynamics are obtained by introducing a delay time τ > 0 in
the model, corresponding to the observed driver and vehicle
reaction time [23]:

ẋn(t + τ ) = V (�xn(t)). (3)

Space

Δxn = xn+1 − xn

Δxn −

xn xn+1 xn+2

n n + 1 n + 2• • • • • • �

FIG. 1. Spacing variables: Vehicle length, �; position, x; and
distance spacing, �x. The vehicle n collides with the vehicle n + 1
if the distance gap �xn(t) − � is negative.

Linear approximation of the delayed quantity in Eq. (3) leads
to the second-order OV model [24], where the reaction time τ

is considered as a relaxation time:

ẍn(t) = 1

τ
[V (�xn(t)) − ẋn(t)]. (4)

The OV model (2) is solely based on the optimal speed
function V while the models (3) and (4) also incorporate
the reaction time parameter τ . More complex OV models
exist with more parameters. See, for instance, the generalized
force [38] or full velocity difference [39] models incorporating
a speed difference term and two relaxation times, or even
the multianticipative model [43] with K � 1 predecessors in
interaction.

All OV models have uniform solutions U (d) such that, for
a given mean spacing d > 0,

�xU
n (t) = d, xU

n (t) = xU
n (0) + tV (d), (5)

for all n and all t . The uniform solution can be stable,
when perturbations to uniform solutions vanish, or unstable.
The analysis of the stability allows one to determine these
properties according to the values of the parameters.

B. Stability and exclusion

The stability analysis of uniform solutions is variously
used in the literature. The local stability analysis consists of
describing the solution of a finite number of vehicles following
a leader going at a constant speed. A line of vehicles (infinite
in length or a ring) is considered for the global (or collective)
stability analysis. The methods allows one to determine values
of the parameters for a stable uniform solution. Both local and
global stability conditions of the OV models are well know
(see, for instance, Ref. [44]). Stability conditions are extracted
by using linear approximations around uniform solutions. The
method is related to the linear stability analysis.

Within the local stability analysis, we consider a vehicle,
for which the leader moves at a constant speed v. One
denotes x(t) as the position of the vehicle at time t � 0 and
x1(t) = x1(0) + vt as the position of the leader. We assume
x(0) + � < x1(0). Local analysis consists of determining
conditions for which the solutions xU (t) = x1(0) − d + tv,
with V (d) = v, are linearly stable. It can be used to formally
control the presence of collision into the dynamics. This is
done by considering the worst case where the leader is stopped
(v = 0 and d = �). In this case the model is collision-free if
it is stable, i.e., x1(t) − x(t) − � → 0, and if moreover the
convergence is nonoscillating (i.e., x1(t) − x(t) − � > 0 for
all t). The basic first-order model (2) is locally linearly stable
if V ′(d) > 0. Moreover, it is nonoscillating and therefore
collision-free. The conditions of the model with a reaction
time are different. For the delayed model (3), the linear stability
holds if 0 < τV ′(d) < π/2, while it is locally nonoscillating
if

0 < τV ′(d) < 1/e, (6)

with e = exp(1) (see Ref. [45]). The second-order model (4)
is locally linearly stable if V ′(d) and τ > 0 and is locally
nonoscillating if

0 < τV ′(d) < 1/4, (7)
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(see, for instance, Ref [44]).
A line of vehicles (infinite or on a ring) is considered for

the global stability analysis. It is well known that the basic
model (2) is globally stable if V ′(d) > 0. This assumption is
natural for a model. The models (3) and (4) both have the
following condition for global linear stability:

0 < τV ′(d) < 1/2, (8)

(see Refs. [24,45]). For sufficiently high reaction time τ , the
models (3) and (4) can produce unstable uniform solutions.
Yet, they are collision-free (i.e., locally nonoscillating) under
more restrictive conditions (we have τV ′ < 1/4 < 1/e <

1/2). This means that the instability of uniform solutions
for models with two parameters (τ and V ′) cannot be
combined with a collision-free property. This can be argued
by using the general second-order model with two parameters
ẍn(t) = F [xn+1(t) − xn(t),ẋn(t)]. If we denote F : (d,v) �→
F (d,v) and the parameters α = ∂F/∂d > 0 and β = ∂F/∂v,
the condition β2 − 4α > 0, for which the model is locally
nonoscillating, is incompatible with the condition for global
instability of the uniform solution β2 − 2α < 0.

Many studies report the presence of collisions with classical
OV models [24,33,35,36,46]. There exist extended OV models
that can be simultaneously locally nonoscillating and globally
unstable (see Refs. [38,39,44]). Yet, this is done by adding
parameters to the dynamics that may be unnecessary for the
modeling of realistic stop-and-go patterns.

C. Definition of a minimal collision-free OV model

The presence of collisions is hard to control with models
of first order by delayed differential equation or models of
second order. This is due to their inertia and tendency to
locally oscillate. In contrast, it is easy to control the exclusion
between the vehicles with ordinary first-order models. With
these models, the collision-free property holds if the optimal
speed function is positive and nil when the distance spacing
is nil [see condition (1)]. However, they always have stable
uniform solutions if they do not consider a reaction time.
Therefore, our purpose is to develop an ordinary first-order
OV model including a reaction time parameter.

The second-order OV model (4) can be obtained by
applying a linear approximation around t to the left part of the
delayed first-order model (3). Analytical and simulation results
have shown that the dynamics obtained with OV models (3)
and (4) are quite similar [32]. Here, we propose to apply a
linear approximation to the right-hand side of Eq. (3) (by
introducing the delay τ to the right). This leads to an implicit
equation on the speed, sometimes related as the generalized
optimal velocity (GOV) model

ẋn(t) = V [�xn(t) − τ (ẋn+1(t) − ẋn(t))]. (9)

The distance spacing is underestimated (respectively overes-
timated) in acceleration (deceleration) situations where the
speed of the predecessor is higher (smaller) than the speed of
the considered vehicle. These behaviors are what we expect
of a reaction time parameter. The dynamics obtained with
the GOV model should be close to those of the classical
models (3) and (4). However, this speed model is not explicit.
To approximate the solution of the implicit equation, the speeds

in the right-hand side of the equation are substituted by the
optimal speed function of the spacing:

ẋn(t) = V {�xn(t) − τ [V (�xn+1(t)) − V (�xn(t))]}. (10)

This model has two predecessors in interaction (the spacing
�xn+1 depends on the position of the second predecessor).
It is solely based on the OV function and the reaction time
parameter. The model is an explicit first-order version of the
classical delayed or second-order OV models. The spacing of
the predecessor is taken into account through the modeling of
the reaction time. Oppositely to usual OV models including
several predecessors in interaction, the goal here is not to
increase the stability [43,47,48]. We aim to describe the
unstable dynamics of the classical OV models by using a
minimal collision-free model.

III. STABILITY ANALYSIS

In this section, we show on one hand that the minimal OV
model (10) is collision-free simply if Eq. (1) is satisfied. On
the other hand, we observe under the same assumption that the
uniform solution can be unstable. This means that collision-
free nonuniform solutions are possible with the model.

A. Local stability analysis and exclusion property

A leader vehicle travels at a constant speed v with a
spacing d such that V (d) = v for the local stability analysis. Its
position at time t is x1(t) = x1(0) + vt . One denotes x(t) as the
position of the following vehicle. We assume x(0) � x1(0) and
investigate the difference x1(t) − x(t) − d. A linear expansion
around the equilibrium point [d,V (d)] gives ẏ(t) = −αy(t)
with α = [1 + τV ′(d)]V ′(d). The solution converges to zero,
i.e., the mean spacing d is stable, if α > 0 [i.e., if V ′(d) > 0].
The convergence is exponential with no oscillation. Therefore
the OV model (10) comporting a reaction time τ > 0 is locally
collision-free if V is increasing.

The collision-free property of the model (10) can be
shown without the requirement of linearization and weaker
assumptions on V [49]. We introduce the continuous func-
tion m(t) = minn �xn(t) with m(0) � �. If at any time
t � 0, there exists unique n0 such that m(t) = �xn0 (t) = �,
then m′(t) = V (�x̂n0+1(t)) − V (�x̂n0 (t)) � 0, with �x̂n(t) =
�xn(t) + τ [V (�xn+1(t)) − V (�xn(t))], if V satisfies as-
sumption (1) (since in this case V (�x̂n0 (t)) = 0 while
V (�x̂n0+1(t)) � 0). This proves by continuity m(t) � � for
all t , and therefore the collision-free property

xn(t) + � � xn+1(t), (11)

for all n and all t . Any solution of model (10), uniform
or nonuniform, are by construction collision-free as soon as
Eq. (1) holds, i.e., as soon as V is positive and nil when the
spacing is smaller than the vehicle length �. This is not the case
for the classical OV models (3) and (4) for which collisions
can appear even if Eq. (1) holds.

B. Global stability analysis

The global linear stability of uniform solutions (5) is
analyzed for the collision-free OV model (10). N vehicles
are considered on a ring of length L with mean spacing
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d = L/N > 0. We denote [x1(t), . . . xN (t)] the curvilinear
positions of the vehicles at time t . �xn(t) = xn+1(t) − xn(t) is
the spacing of the vehicle n for all 1 � n < N , and �xN (t) =
L + x1(t) − xN (t). The positions’ differences x̃n(t) = xn(t) −
xU

n (t) are analyzed for all n = 1, . . . N to establish the stability
of Eq. (5). A linear expansion around the equilibrium point
[d,V (d)] leads to the solution [y1(t), . . . yN (t)] of the linear
system

ẏn(t) = α�yn(t) + β�yn+1(t), (12)

where 1 � n � N and yn+1(t) = y1(t) for n = N , α = [1 +
τV ′(d)]V ′(d), and β = −τ [V ′(d)]2. The uniform solution U is
linearly stable if yn(t) → 0 when t → ∞ for all n. The linear
system is ẏ(t) = My(t) with M being an N × N circulant
matrix. The eigenvalues of M are λk = −[α(1 − ιk) + βιk(1 −
ιk)], ιk = exp(i2πk/N ) being the kth N root of the unit,
k = 0, . . . N − 1. λ0 = 0 and the system is linearly stable
if Re(λk) < 0 for all k = 1, . . . N − 1, denoting Re(λk) =
V ′(d)(1 − ck)(ack − 1) as the real part of λk with a = 2τV ′(d)
and ck = cos(2πk/N ). If V ′(d) > 0, the sign of Re(λk) is the
same as ack − 1. It is positive or nil if V ′(d) � 0. Therefore
Re(λk) is strictly negative for all k = 1, . . . N − 1 and all; i.e.,
the uniform solution is globally stable, if and only if

0 < τV ′(d) < 1/2. (13)

The condition is the same as that of the classical models (3)
and (4). If the condition does not hold, there exists k such that
Re(λk) > 0 if

N > 2π/ cos−1[1/(2τV ′(�))]. (14)

A minimal number of vehicles is necessary to obtain nonuni-
form solutions. The solutions obtained with the collision-free
OV model are described by simulation in the next section.

IV. NONUNIFORM SOLUTIONS

In this section the solutions of the new collision-free OV
model (10) are calculated by simulation. The system on the
ring in considered. We use the parallel explicit Euler scheme

xn(t + δt) = xn(t) + δt V {�xn(t)

− τ [V (�xn+1(t)) − V (�xn(t))]}, (15)

with 1 � n � N and �xn+1(t) = �x1(t), for n = N , and
δt = 10−3 s being the time step. The linear convergence
of the discrete time system to the uniform solutions is shown in
the Appendix. Here we describe the nonuniform solutions in
the unstable situation where τV ′(d) > 1/2 and Eq. (14) holds.
A bounded linear optimal speed function is investigated before
testing nonlinear functions.

A. Bounded linear optimal speed function

We first investigate the new OV model by using the basic
bounded linear optimal speed function

Vl(d) = min{v0, max {0,(d − �)/T }}, (16)

with � = 5 m, v0 = 20 m/s, T = 1.5 s, and τ = 1 s. The values
do not satisfy the stability condition (13).

A single experiment is done first. Twenty-two vehicles
are observed on a 250-m-long ring from the uniform initial
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FIG. 2. Trajectories of 22 vehicles on a ring with the collision-free
model and bounded linear OV function.

configuration with normal noise proportional to 0.5 m. A real
experiment has been realized with similar conditions [4]. The
real data show quick emergence and propagation of stop-and-
go waves. Such an experiment was also performed with an
extended OV car-following model [50] or the macroscopic
Payne-Whitham model [51]. The trajectories obtained with
the collision-free OV model are shown in Fig. 2. Stop-and-go
waves also emerge. Two waves seem to develop into the
simulation while only one is observed in the empirical data.
Yet different initial conditions (for instance, a jam) allow one
to obtain the propagation of only one wave into the system.
The time at which stop-and-go occurs depends on the noise
of the initial conditions. It can be long if initially the noise is
very small. This single experiment of a transient state allows
one to validate qualitatively the model with a bounded linear
optimal speed. Further experiments have to be done to formally
describe the model in a stationary state.

The distribution of the speeds is estimated in the stationary
state (when t � tS = 106 s) for various density levels. Here,
deterministic results are obtained by taking jam initial condi-
tions [where xn+1(0) − xn(0) = � for all n excepted one]. First,
the influence of the system size is investigated to exclude finite
size effects. The vehicles’ mean and modal speeds are plotted
for L = 505, 1005, and 2005 m in Fig. 3. The modal speed
values are calculated using Gaussian kernels and samples of
size 5 × 105. As expected for this linear case, the mean speed
is equal to the optimal speed Vl(d). The two modal speeds
are in general equal to the extremes (0,v0). They can only
depend on the density level at the borders where d ≈ � and
d ≈ d0 if the system is small. This phenomenon is attributed
to the limited system size. For sufficiently large systems, the
modal values of nonuniform solutions are constant, equal to
(0,v0), for all congested density levels when the OV function
is bounded linearly (see bottom panel of Fig. 3).

B. Non-linear optimal speed functions

The optimal speed functions tested in this section are
nonlinear. They are all positive and increasing, nil when d � �

and equal to the desired speed v0 when d � d0 = � + T v0,
with � = 5 m, v0 = 20 m/s, T = 1.5 s. First, we use the convex
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FIG. 3. Vehicle speeds according to the mean spacing in the
stationary state for the bounded linear speed function (16) according
to the size of the ring (L = 505, 1005, and 2005 m). The middle
curve is the mean value, while upper and lower curves give the modal
values. The vertical dotted lines correspond to the linear stability
conditions.

function

Vv(d) =
⎧⎨
⎩

0, d � �,
(d−�)2

v0T 2 , � � d � d0,

v0, d � d0.

(17)

The derivative of the convex optimal speed function is linear
V ′

v(d) = 2(d − �)/(v0T
2) for d ∈ [�,d0] and nil elsewhere. If

τ = 1 s, the linear stability condition of the model (10) is
d < 16.25 m. Next, we investigate the concave optimal speed
function

Vc(d) =
⎧⎨
⎩

0, d � �,
d−�
T

[
2 − d−�

v0T

]
, � � d � d0,

v0, d � d0.

(18)

The derivative of the concave optimal speed function is
affine V ′

c (d) = 2/T − 2(d − �)/(v0T
2) for d ∈ [�,d0] and is
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FIG. 4. Vehicle speeds according to the mean spacing in the
stationary state for the nonlinear speed functions (17), (18), and (19).
The middle curve is the mean value, while the upper and lower
curves give the modal values. The vertical dotted lines correspond to
the linear stability conditions. L = 2005 m.

nil elsewhere. The linear stability conditions leads to d >

23.75 m. Last, we use the sigmoid function

Vs(d)=

⎧⎪⎪⎨
⎪⎪⎩

0, d � �,

2 (d−�)2

v0T 2 , � � d � � + T v0/2,

2 d−�
T

[
2 − d−�

v0T

] − v0, � + T v0/2 � d � d0,

v0, d � d0.

(19)

The derivative is bounded linear V ′
s (d) = 4(d − �)/(v0T

2) for
d ∈ [�,� + T v0/2], V ′

s (d) = 4/T [1 − (d − �)/(v0T )] for d ∈
[� + T v0/2,d0], and nil elsewhere. The stability does not hold
if 10.625 < d < 29.375 m.

The characteristics of the solutions obtained with nonlinear
speed functions are described in Fig. 4. As previously, we
mainly obtain bimodal distribution of the speed when the
system is unstable. However, here the modal speed values
depend on the mean spacing independently of the system size.
This is not the case with the bounded linear Vl , where the modal
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values are always equal to the extremes (0,v0) if the system is
large enough. Modal speed values (or spacing) depending on
the density are also observed with classical models through
the form of the OV function [3,32], as well as with real
data [8,9]. These results suggest that linear OV functions fail
to describe the microscopic characteristic of realistic traffic
waves.

When the optimal speed function is convex, the high mode
of the speed’s distribution can vary continuously with the
spacing d from the mean to the maximal speed (see top panel of
Fig. 4 and top panels of Fig. 5). A large range of values arise.
The low mode remains close to zero. On the opposite, for
concave speed function, the high mode is close to the maximal
speed while the minimal one decreases continuously from the
mean to zero by decreasing d (see center panel of Fig. 4 and
center panels of Fig. 5). These two phenomena are observed
by using sigmoid optimal speed. The high mode is regulated
for low d where Vs is convex, while it is the lower one for high
d where Vs is concave. In between, a continuous transition
occurs from one shape of the distribution to the other. At the
inflexion point, one observes simultaneously the two shapes
with a double peak in the center and therefore a distribution
with three modes (see bottom panel of Fig. 4 and bottom
panels of Fig. 5). The diagram in Fig. 4 with sigmoid optimal
speed Vs could be characterized by five different transitions
indicating the occurrence of multimodal speed distributions
and the reach of the extreme values. In the following we
simplify this complexity to focus on the most interesting three
phases of the model:

(1) free, where all the vehicles are at the desired speed;
(2) partially congested with slow-down-and-go waves

(where “go” means that the vehicles move at a speed close
to the desired one and “slow-down” means that the speed is
between the desired speed and zero);

(3) fully congested with stop-and-slow-down waves
(where “stop” means that the speed is close to zero).
A three-phase traffic theory has been developed by Kerner [52].
Here the third state, with go-and-slow-down waves, is not the
synchronous one of the three-phase theory. However, differ-
ent asymmetric sigmoid speed functions can give partially
congested states of the model close to the free state with
bimodal distributions of the speed and close modal values,
or unimodal distributions. The repartition of the vehicles is
relatively homogeneous and only one mode for the speed
can be considered. This region could correspond to the
synchronous state of three-phase theory. These aspects have to
be explored in the light of real data and calibration of the OV
function and also by using extensions of the model describing
multilane traffic.

V. CONCLUSION

A new continuous OV car-following model is proposed
for traffic applications. The model is a generic and minimal
first-order one, based on the optimal speed function V and
the reaction time parameter. In contrast to classical OV
models, it does not produce local oscillating dynamics, and
is intrinsically asymmetric and collision-free. This is achieved
by using a first order system with two predecessors in the
interaction, instead of usual inertial second order or delayed

systems with one predecessor. The model shows that the
modeling of collision-free traffic waves with a large range
of parameters is possible with the minimalist OV framework,
without adding superfluous parameters.

The model has the same stability condition of the uniform
solution as classical OV models. It is unstable for a sufficiently
high reaction time. Unstable solutions are nonuniform and
collision-free, with the limit cycle describing realistic prop-
agation of stop-and-go waves and bimodal distributions of
the speed. The characteristics of the solutions, more precisely
the modal speed values, are calibrated by the shape of the
optimal speed function V . For bounded linear functions—and
sufficiently large systems—the modal values of the speed are
0 and v0 independently of the density. Using nonlinear V ,
the modal values continuously depend on the density level
as observed in empirical data. This suggests that linear OV
functions fail to describe realistic microscopic behaviors. The
modal values can be regulated by using convex or concave
functions. Sigmoid functions yield in an interesting two-phase
congested traffic delimited by the inflexion point.

The modeling framework facilitates the description of
stop-and-go waves and bimodal speed’s distribution with the
form of the optimal speed function. Statistical estimations and
further model validations are necessary. Yet, the large range of
collision-free nonuniform dynamics reproduced, the few and
measurable parameters, and the low computational cost of the
model make this approach useful for microscopic simulation
of traffic or pedestrian flows, as well as for further theoretical
investigations.

APPENDIX: GLOBAL STABILITY ANALYSIS IN
DISCRETE TIME

The linear stability of uniform solutions is investigated in
discrete time with the model (10). As previously, N vehicles
are considered on a ring of length L. The discrete scheme (15),
with δt > 0 the time step, is linearized leading to

yn(t + δt) = yn(t) + δt × [α�yn(t) + β�yn+1(t)], (A1)

where 1 � n � N and yn+1(t) = y1(t) for n = N , α = (1 +
τV ′)V ′, and β = −τ (V ′)2, and by denoting V ′ = V ′(d)
with d = L/N . This is ẏ(t + δt) = By(t), with y(t) =
t[y1(t), . . . yN (t)] and

B =

⎡
⎢⎣

1 − δtα δt(α − β) δtβ

1 − δtα δt(α − β) δtβ

δtβ 1 − δtα δt(α − β)
δt(α − β) δtβ 1 − δtα

⎤
⎥⎦ .

The solution satisfies y(t) = Bt/δty(0). Here Bt/δt can be
easily calculated if B is diagonalizable. In this case, the
solution converges towards the vector nil if the modules of
the eigenvalues are strictly less than 1, except one equal to 1.
Since the matrix B is circulant, the eigenvectors of the matrix
are powers of N roots of the unit and the eigenvalues are

λk = 1 − δt[α(1 − ιk) + βιk(1 − ιk)], (A2)

with ιk = exp(i2πk/N ), k = 0, . . . N − 1. We have λ0 =
1, Re(λk) = 1 − δt[α(1 − ck) + β(ck − c2k)], and Im(λk) =
−skδt[α − β(1 − 2ck)], with ck = cos(2πk/N ) and sk =
sin(2πk/N ). Here |λk|2 < 1 if δt < δ(ck) =: [α + β(1 +
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FIG. 5. Normalized histograms of the vehicles’ speeds in the stationary state with varying d . From top to bottom: convex, concave, and
sigmoid optimal speed functions.

2ck)](α2 + β2 + 2αβck)−1. The maximal time step value must
be less than mink δ(ck) for the discretization to converge.
This limit value must be strictly positive. The function δ is
decreasing on [−1,1] since δ′(x) = −2β2(α − β)(α2 + β2 +
2αβx)−2 < 0. δ(ck) is minimal at the limit where ck → 1, i.e.,
for k = 1 or k = N − 1. One obtains

δt < δ(c1) � α + 3β

(α + β)2
= 1

V ′ (1 − 2τV ′). (A3)

The inequality is an equality at the limit where N → ∞.
Assumption (A3) is a sufficient limit smallness condition of
the time step for any finite system with N < ∞. It is the exact
condition at the limit N → ∞. Note that this bound is strictly
positive if V ′ > 0 and 1 − 2τV ′ > 0, which are the conditions
for the linear stability of uniform solutions in the continuous
time case. For τ = 0, one obtains the well-known condition
δt < 1/V ′ of the discrete systems with no delay.
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