000171892 001__ 171892
000171892 005__ 20240711085702.0
000171892 0247_ $$2Handle$$a2128/8060
000171892 037__ $$aFZJ-2014-05448
000171892 041__ $$aEnglish
000171892 1001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b0$$eCorresponding Author$$ufzj
000171892 1112_ $$aFuture Energy Forum 2014$$cAachen$$d2014-10-17 - 2014-10-17$$gFEN 2014$$wGermany
000171892 245__ $$aLi$_{7}$La$_{3}$Zr$_{2}$O$_{12}$ electrolyte for all-solid-state batteries
000171892 260__ $$c2014
000171892 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s171892
000171892 3367_ $$033$$2EndNote$$aConference Paper
000171892 3367_ $$2DataCite$$aOutput Types/Conference Poster
000171892 3367_ $$2DRIVER$$aconferenceObject
000171892 3367_ $$2ORCID$$aCONFERENCE_POSTER
000171892 3367_ $$2BibTeX$$aINPROCEEDINGS
000171892 502__ $$cRuhr Universität Bochum
000171892 520__ $$aA major drawback of conventional Li-ion batteries is the use of organic liquid electrolytes. As an alternative, batteries with solid lithium conducting electrolytes are investigated. One of the promising oxide materials is the garnet-structured Li7La3Zr2O12 (LLZ) with a competitive Li-ion conductivity of about 10-4 S/cm. Furthermore, the material has a good thermal stability (up to 1250°C), is chemical compatible to metallic lithium, and electrochemically usable up to 8V vs. Li/Li+. 	The structural stability and ion conduction performance can be improved by partial substitution (e.g. Al, Ta, Y). Furthermore, the sintering temperature, required to achieve the high conductive cubic phase, is reduced by doping. An additional approach is to reduce the thickness of the electrolyte layer to increase battery performance. At IEK1, we investigate two main approaches for solid state electrolyte fabrication. Very thin layers are synthesized by PVD. The aim is to achieve a thin film battery in the range of a few micrometers. For large scale fabrication of functional layers tape casting of LLZ is investigated.
000171892 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000171892 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000171892 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000171892 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b2$$ufzj
000171892 7001_ $$0P:(DE-Juel1)145805$$aBünting, Aiko$$b3$$ufzj
000171892 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b4
000171892 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b5$$ufzj
000171892 7001_ $$0P:(DE-Juel1)162280$$aGehrke, Hans-Gregor$$b6$$ufzj
000171892 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b7$$ufzj
000171892 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b8$$ufzj
000171892 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b9$$ufzj
000171892 773__ $$y2014
000171892 8564_ $$uhttps://juser.fz-juelich.de/record/171892/files/FZJ-2014-05448.pdf$$yOpenAccess
000171892 8564_ $$uhttps://juser.fz-juelich.de/record/171892/files/FZJ-2014-05448.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000171892 8564_ $$uhttps://juser.fz-juelich.de/record/171892/files/FZJ-2014-05448.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000171892 8564_ $$uhttps://juser.fz-juelich.de/record/171892/files/FZJ-2014-05448.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000171892 909CO $$ooai:juser.fz-juelich.de:171892$$popen_access$$pdriver$$pVDB$$popenaire
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145805$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171892 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b4$$kVS-II
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162280$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000171892 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000171892 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vSpeicher und vernetzte Infrastrukturen$$x0
000171892 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000171892 9141_ $$y2014
000171892 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171892 920__ $$lyes
000171892 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000171892 9801_ $$aFullTexts
000171892 980__ $$aposter
000171892 980__ $$aVDB
000171892 980__ $$aUNRESTRICTED
000171892 980__ $$aFullTexts
000171892 980__ $$aI:(DE-Juel1)IEK-1-20101013
000171892 981__ $$aI:(DE-Juel1)IMD-2-20101013