000171930 001__ 171930
000171930 005__ 20210129214332.0
000171930 0247_ $$2doi$$a10.1007/s10933-014-9769-3
000171930 0247_ $$2WOS$$aWOS:000333057800003
000171930 037__ $$aFZJ-2014-05484
000171930 082__ $$a930
000171930 1001_ $$0P:(DE-HGF)0$$aHeyng, Alexander$$b0$$eCorresponding Author
000171930 245__ $$aLate Holocene hydrologic changes in northern New Zealand inferred from stable isotope values of aquatic cellulose in sediments from lake Pupuke
000171930 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2014
000171930 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414996931_19698
000171930 3367_ $$2DataCite$$aOutput Types/Journal article
000171930 3367_ $$00$$2EndNote$$aJournal Article
000171930 3367_ $$2BibTeX$$aARTICLE
000171930 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171930 3367_ $$2DRIVER$$aarticle
000171930 520__ $$aIsotopic records of aquatic cellulose are becoming increasingly important for palaeohydrological reconstructions, but widespread application of this climate proxy is hampered by minerogenic contamination that affects oxygen isotope measures in cellulose. Few records of isotopes in aquatic cellulose are available from palaeoclimate archives in the Southern Hemisphere. In this study, we used a new bulk cellulose extraction method and determined the oxygen (δ18O) and carbon (δ13C) isotope values in cellulose from a Holocene lake sediment core segment (7.2–1.1 cal ka BP) from Lake Pupuke, Auckland, New Zealand. Isotope values from modern, potential sources of sedimentary cellulose revealed the aquatic origin of the cellulose extracted from the core, and hence enabled inference of past lake water δ18O values from the δ18O of measured cellulose in the core. A shift to a more positive water balance in the lake was identified around 2.8 cal ka BP by a decrease in inferred lake water δ18O values. At that time, greater epilimnetic primary productivity is indicated by the higher δ13C values of sedimentary cellulose. Greater divergence between the δ13C values of cellulose and bulk organic matter suggests stronger stratification of the lake, likely caused by greater freshwater input. We discuss a possible link to a solar minimum that occurred at that time.
000171930 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000171930 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000171930 7001_ $$0P:(DE-HGF)0$$aMayr, Christoph$$b1
000171930 7001_ $$0P:(DE-Juel1)129567$$aLücke, Andreas$$b2$$ufzj
000171930 7001_ $$0P:(DE-Juel1)129557$$aWissel, Holger$$b3$$ufzj
000171930 7001_ $$0P:(DE-HGF)0$$aStriewski, Bernd$$b4
000171930 773__ $$0PERI:(DE-600)1478181-5$$a10.1007/s10933-014-9769-3$$n4$$p485-497$$tJournal of paleolimnology$$v51$$x0921-2728$$y2014
000171930 8564_ $$uhttps://juser.fz-juelich.de/record/171930/files/FZJ-2014-05484.pdf$$yRestricted
000171930 909CO $$ooai:juser.fz-juelich.de:171930$$pVDB:Earth_Environment$$pVDB
000171930 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171930 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171930 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171930 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171930 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171930 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171930 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171930 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000171930 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000171930 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000171930 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000171930 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000171930 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171930 9141_ $$y2014
000171930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129567$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000171930 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129557$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171930 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000171930 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000171930 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000171930 920__ $$lyes
000171930 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000171930 980__ $$ajournal
000171930 980__ $$aVDB
000171930 980__ $$aI:(DE-Juel1)IBG-3-20101118
000171930 980__ $$aUNRESTRICTED