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Abstract

Terrestrial hydrological processes interact in a complex, non-linear fashion. It is important to
quantify these interactions to understand the overall mechanisms of the coupled water and
energy, cycles. In this study, the concept of a dual boundary forcing is proposed that connects
the variability of atmospheric (upper boundary) and subsurface (lower boundary) processes to
the land surface mass and energy balance components. According to this concept, the space-
time patterns of land surface mass and energy fluxes can be explained by the variability of the
dominating boundary condition for the exchange processes, which is determined by moisture
and energy availability. A coupled subsurface-land surface model is applied on the Rur
catchment, Germany, to substantiate the proposed concept. Spectral and geostatistical analysis
on the'observations and model results show the coherence of different processes at various
space-time scales in the hydrological cycle. The spectral analysis shows that atmospheric
radiative forcing generally drives the variability of the land surface energy fluxes at the daily
time scale, while influence of subsurface hydrodynamics is significant at monthly to multi-
month time scales under moisture limited conditions. The geostatistical analysis demonstrates
that atmospheric forcing and groundwater control the spatial variability of land surface
processes under energy and moisture limited conditions, respectively. These results suggest
that under moisture limited conditions, groundwater influences the variability of the land
surface mass and energy fluxes. Under energy limited conditions, on the contrary, variability

of land surface processes can be explained by atmospheric forcing alone.



1. Introduction

Atmospheric and subsurface processes show variability at different space-time scales [e.g.,
Kumar and Georgiou, 1993; Haddad et al., 2004; Gundogdu and Guney, 2007; Taany et al.,
2009; Beecham and Chowdhury, 2010]. Land surface connects these two compartments (i.e.,
atmosphere and subsurface) of the hydrological cycle. Because of the direct interactions, land
surface processes (e.g., evapotranspiration, ET and sensible heat transfer) are influenced by

the variability of atmosphere and subsurface hydrodynamics.

The connection between subsurface hydrodynamics and land surface mass and energy fluxes
has been a subject of research for some time [e.g., Tian et al., 2012; Niu et al., 2013]. Sklash
and Farvolden [1979] discussed the important role of groundwater on surface runoff
generation using observations and simulation results. Liang et al. [2003] showed the impact of
the surface water-groundwater interactions on land surface processes. Maxwell and Miller
[2005] demonstrated the effect of including detailed subsurface hydrodynamics in a land
surface parameterization scheme for simulating the coupled water and energy cycles. Kollet
and Maxwell [2008] studied the influence of groundwater dynamics on land surface energy
fluxes and proposed a critical water table depth (WTD) zone where the effect is significant
along hillslopes. Similar relationship between £7 and WTD was found by Szilagyi et al.
[2013], who used observations from Platte river valley, USA. Observations [ Yeh and Eltahir,
2005] and model results [e.g., Miguez-Macho and Fan, 2012a] also reveal the role of
groundwater as a modulator of surface runoff. The groundwater control on E7 through
shallow soil moisture has been investigated explicitly in several studies [e.g., Chen and Hu,
2004; Soylu et al., 2011]. Lam et al. [2011] studied the spatial and temporal connection
between groundwater dynamics and E7 and showed the importance of groundwater
contribution towards dry season evaporation. The study by Miguez-Macho and Fan [2012b]

demonstrated the influence of groundwater on E£7 at a seasonal scale and discussed different
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mechanisms responsible for this phenomenon. Several studies have demonstrated the scaling
properties of groundwater dynamics and showed the connection with surface water system
[e.g., Little and Bloomfield, 2010; Schilling and Zhang, 2012] and energy fluxes [e.g., Amenu

etal., 2005].

The interaction between land surface processes and atmospheric variables has also been
studied previously [e.g., Brubaker and Entekhabi, 1996; Betts et al., 1996; Porporato et al.,
2000].'Several studies demonstrated the effect of land surface soil moisture [e.g., Manabe and
Delworth, 1990; Rowell and Blondin, 1990; Findell and Eltahir, 1997; Seuffert et al., 2002;
Gedney and Cox, 2003; Zhang et al., 2008] and groundwater dynamics [e.g., Maxwell et al.,
2007; Yuan et al., 2008] on atmospheric processes. The important role of groundwater
dynamics on land-atmosphere moisture feedback was discussed by York et al. [2002]. Anyah
et al. [2008] showed the effect of subsurface hydrodynamics on coupled land-atmosphere
variability and argued that a shallow groundwater table tends to enhance E7 in arid regions,
which eventually leads to increased precipitation. Ferguson and Wood [2011] used global
satellite remote sensing data to identify the regions where land-atmosphere coupling persists.
Phillips and Klein [2014] used the observations from Southern Great Plains, USA, and

showed the influence of atmospheric forcing on land surface processes at daily time scale.

The aforementioned studies suggest that interconnections exist between different
compartments of the terrestrial hydrological cycle (i.e., subsurface, land surface, and
atmosphere). However, quantifying these interconnections between the compartmental mass
and energy fluxes is complicated. This is mainly due to the diverse space-time scales
associated with the processes that comprise this system, which has been discussed previously
in relation to the variability in atmospheric [e.g., Matsoukas et al., 2000; Hsu and Li, 2010],

land surface [e.g., Smith et al., 1998; Labat et al., 2005; Ding et al., 2013] and subsurface



[e.g., Liang and Zhang, 2013] processes, as well as land-atmosphere interactions [e.g.,

Delworth and Manabe, 1993; Wu and Dickinson, 2004].

In this context, we propose the concept of a dual-boundary forcing (DBF) to represent and
quantify the interactions between the compartmental mass and energy balance components at
the relevant space and time scales. Arguably, it is not feasible to fully characterize these
interactions with observations. Continuous measurements of all the fluxes and states from
each compartment of the hydrological cycle covering the entire catchment for extended time
periods would be required for this purpose, which are generally not available [e.g.,
Seneviratne and Stockli, 2008; Ferndndez-Prieto et al., 2013]. Therefore, to support the
proposed concept, we apply the coupled subsurface-land surface model ParFlow.CLM
[Maxwell and Miller, 2005; Kollet and Maxwell, 2008] to a regional scale catchment (on the
order of 10°km?) in Germany to simulate the spatially distributed mass and energy fluxes in
the hydrological cycle over three consecutive years (2009-2011). The coupled model consists
of the groundwater/surface water flow model ParFlow [Ashby and Falgout, 1996; Jones and
Woodward, 2001; Kollet and Maxwell, 2006] and the Common Land Model (CLM, [Dai et
al., 2003]). In the first step, we demonstrate the model’s capability to represent the magnitude
and dynamics of different processes in the hydrological cycle by comparing the model results
with spatially-distributed measurements. In ensuing steps, we analyze measured and
simulated mass and energy fluxes using spectral and geostatistical analysis techniques. The
results illustrate scale-dependent coherence between groundwater dynamics and land surface

processes, which substantiate the proposed DBF concept.
2. Conceptual approach

The underlying hypothesis of this study is that the land surface processes are influenced by a

DBF at different space-time scales. According to this hypothesis, the atmosphere and



groundwater act as the upper and the lower boundaries, respectively. The availability of
energy, and moisture determines which boundary condition dominates the exchange processes.
The land surface reacts and interacts at the interface between the free atmosphere and
subsurface to adapt or transform the variability of the processes associated with those
boundaries. Therefore, the space-time patterns in land surface processes can be in large parts
explained by the variability of the dominant boundary condition at the respective space and

time scales, when accounting for major non-linear feedbacks.

Figure 1 shows a schematic of the proposed DBF concept. Hypothetical time series of
atmospheric and land surface (net radiation, R,.; latent heat flux, LE; and potential latent heat
flux, LE,,), and subsurface (groundwater table depth, W7D) fluxes and states are shown in
this figure. Coherence between atmospheric and land surface processes is observed under both
energy limited and moisture limited conditions. Under energy limited conditions, LE agrees
well with LE,,, because moisture is abundant. Under moisture limited conditions, the
groundwater contribution becomes essential to meet the daily £7 demand. Because of this
dependence, the high frequency (daily) variability of land surface energy fluxes is propagated
into the subsurface, generating the variability in subsurface hydrodynamics at the respective
time scale [e.g., Gribovszki et al., 2010; Fahle and Dietrich, 2014]. The subsurface
hydrodynamics, in contrast, influence the low frequency variability of the land surface
processes under soil moisture limited conditions resulting in the increasing difference between
LEg, and LE in Figure 1. The controlling effect of the low frequency variability of subsurface
hydrodynamics on land surface energy fluxes has been discussed by Amenu et al. [2005], who

also suggested that this influence may be significant under dry conditions.

The proposed concept may be corroborated via the analysis of in-sifu observations and
physics based simulations of moisture and energy states and fluxes. It should be mentioned

that the DBF concept may be simplified compared to the actual non-linear feedbacks between
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the mass and energy balance components in the hydrological cycles. In this study, we applied
a physics based distributed model, which incorporates mathematical formulations to represent
complex processes of the coupled terrestrial hydrological and energy cycles to the best of our
current knowledge. There is uncertainty with respect to model parameterization and structure,
input parameters, and space/time discretization of the governing partial differential equations
[e.g., Vrugt et al., 2005]. Accounting for all sources of uncertainty is not feasible in the
current modeling framework, because of the limitations of computational resources. However,
the capability of the model to reproduce the major states and fluxes is tested by comparing the
results with measured data from the experimental catchment. Additionally, there may be
significant feedbacks from the land surface processes and subsurface hydrodynamics to the
free atmosphere, which may also affect the connections between the mass and energy balance
components at different space-time scales. We do not consider these here, because the model

is forced with the atmospheric variables in offline mode.
3. Methods

3.1 The study area: Rur catchment

The study area is the Rur catchment (Figure 2a), which is located in western Germany with an
area of about 2,400km”. The Rur River has a length of some 165km with headwaters located
in Belgium and discharge into the Meuse River near Maastricht. The northern part of the
catchment is characterized by flat lowland regions, which is a part of the Belgium-Germany
loess belt formed by unconsolidated rock deposits. Agriculture is the major land use type in
this part of the catchment. This flat region receives an annual precipitation of approximately
600-800mm and contributes to a potential ET of approximately 550-600mm/a [Bogena et al.,

2005].



The southern part of the catchment is characterized by the mountainous Eifel region, where
Palaeozoic and Mesozoic rock outcrops. Compared to the northern lowlands, this
mountainous region is characterized by a higher precipitation amount of more than 1200mm/a
and a lower potential ET amount of approximately 550mm/a [Bogena et al., 2005]. The Eifel
is heavily forested with coniferous trees. A distinct difference in the mean annual temperature
between the northern (8.5-10.5°C) and the southern (7.0-9.0°C) part of the catchment is

observed due a 600m difference in elevation.

3.2 The coupled model: ParFlow.CLM

ParFlow is an integrated, parallel, variably saturated groundwater flow model that solves the

Richards’ equation [Richards, 1931] in three spatial dimensions:

dy , 00(y) o
S50 Fy +¢ > =V.q+S (1)
q=—k(x)ky)V(y-2) ()

where S; is specific storage [m], 6 is soil moisture [-], w is pressure head [m], ¢ is time [s], ¢
is porosity [-], q is water flux [ms™'], S is general source/sink term [s'], k(x) is saturated
hydraulic conductivity [ms™], k(r) is relative permeability [-], and z is depth below surface
[m]. ParFlow uses a cell-centered finite-difference/finite control volume scheme in space and
an implicit backward Euler scheme in time to solve this equation. The surface flow is
integrated by applying a free surface overland flow boundary condition at the land surface
[Kollet and Maxwell, 2006]. The kinematic wave equation is solved maintaining the
continuity of pressure and flux at the boundary. A terrain following vertical grid can be used

in ParFlow honoring the topographic slopes in an approximate fashion [Maxwell, 2013].

The land surface model CLM is coupled with ParFlow to simulate land surface mass and

energy balance components [Maxwell and Miller, 2005; Kollet and Maxwell, 2008]. Vertical
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mass, energy, and momentum fluxes are described by the Monin-Obukhov similarity principle

in CLM. The energy balance equation in CLM can be written as:
Ruei(60)=LE(6)+ H(0)+G(0) 3)

where R,.; is net radiation [Wm™], LE is latent heat flux [Wm™], H is sensible heat flux [Wm™
1, and G is ground heat flux [Wm™]. This equation is written as a function of 4 to
demonstrate the connection between land surface energy balance and subsurface
hydrodynamics. The source/sink term S in equation (1) corresponds to the moisture dependent
LE in equation (3). The surface heat transfer in CLM is simulated by solving the heat
diffusion equation. G is applied as the top boundary condition to solve this equation at the
land surface and obtained as the residual of equation (3), which closes the energy balance. It
should be mentioned that, CLM considers only conduction process in simulating subsurface
energy transport ignoring convection, which eventually decouples the heat transport from the
moisture transport in the coupled model [Kollet et al., 2009]. The land surface model CLM is
forced with atmospheric variables including precipitation rate, radiation, temperature,
barometric pressure, wind speed, and humidity. The off-line coupling scheme considered in
this study assumes that, these atmospheric variables do not change due to transient land
surface conditions [Kollet, 2009]. This assumption may influence the mass and energy fluxes
simulated by the model because of the non-linear feedback mechanisms between different
compartments mentioned before. Dai et al. [2001] describes the parameterizations in CLM in

details.

In the coupled modeling framework, ParFlow replaces the simplified hydrological scheme in
CLM and simulates subsurface hydrodynamics along with surface runoff. In return, CLM
calculates the non-linear source/sink terms of soil moisture (e.g., infiltration from

precipitation and ET7, respectively) for ParFlow. At every 1h time step, the two coupled model



components exchange fluxes and shallow soil moisture distributions in an operator splitting

approach.
3.3 Rur model setup

The ParFlow.CLM model is applied over a model domain encompassing the Rur catchment.
A total subsurface depth of 50m is considered in the model, with a variable vertical
discretization ranging from 4x10”m at the land surface to 2x10°m at the bottom of the model
domain using the aforementioned terrain following grid implementation. Laterally, the model
hasa uniform grid resolution (Ax=Ay) of 1km with 168 X168 cells in x and y dimensions,
respectively. No-flow lateral and bottom boundary conditions are applied to the model
domain. At the land surface, a free surface overland flow boundary condition is used [Kollet

and Maxwell, 2006].

We obtain spatially distributed vegetation cover information (Figure 2b) for the model
domain from the Global Land Cover 2000 (1km spatial resolution) digital database
(GLC2000, European Commission, Joint Research Centre, 2003), with plant parameters
derived following the International Geosphere-Biosphere Program (IGBP) standard. The
deeper subsurface in the model is homogeneous with parameter values (Table 1) obtained
from Gleeson et al. [2011]. Digital Soil Map of the World (DSMW) provided by the Food and
Agricultural Organization of UNO (FAO) and the Euro-soil database information [e.g.,
Dolfing and Scheltens, 1999] are used to represent the texture of different soil types in the
shallow subsurface (Figure 2¢). The van Genuchten function represents the saturation
pressure head relationship for different soil types in the model [van Genuchten, 1980], with

parameter values (Table 2) obtained from Schaap and Leij [1998].

The simulation period extends from January 2009 until December 2011 with a time resolution

of one hour. Atmospheric variables are obtained from the COSMO-DE re-analysis data set of
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the German Weather Service (DWD). We apply linear interpolation to downscale these
atmospheric variables to the model grid resolution of 1km, because COSMO-DE operates at a
lateral grid resolution of 2.8km. A model spin-up is performed to achieve a realistic initial
condition. For this purpose, the model is initialized with an arbitrary uniform water table
depth of 5m below ground surface. With this setup, repeated model runs are performed using
the hourly atmospheric forcing data of 2009 to reach a dynamic equilibrium, which required

about 20 years of simulation time.

3.4 Field measurements

The Rur catchment is the central research area for the Transregional Collaborative Research
Centre, TR32 [Vereecken et al., 2010]. It is also the central monitoring site of the Eifel/Lower
Rhine valley observatory of the Terrestrial Environmental Observatories, TERENO [Bogena
etal., 2006], which is coordinated at the Research Centre Juelich (Forschungszentrum
Juelich). This catchment has well-established measurement facilities for monitoring the mass
and energy balance components from the subsurface into the atmosphere. The observations
used in this study are summarized in Table 3. The geographic locations of the measurement

sites are shown in Figure 2a.

River discharge measurements are obtained from the Nature, Environment, and Consumer
Protection Agency (LANUYV) of North Rhine-Westphalia, Germany, which collects discharge
information at several gauging stations along the Rur River. There are large reservoir systems
in the mountainous southern part of the catchment, which influence the downstream flow
considerably. Therefore, we chose the Monschau, a gauging station at the upstream reaches of
the river for comparison with the simulated discharge, which is arguably less influenced by

the management practices.
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A state-of-the-art wireless sensor network was installed at the forested sub-catchment
Wuestebach in 2009 to gather continuous, spatially distributed soil moisture information at
three different soil depths (5cm, 20cm and 50cm) [e.g., Bogena et al., 2010; Rosenbaum et al.,
2012]. Similar sensor network was also installed at the Rollesbroich test site in 2011. We used
the average soil moisture information from these sensor networks in this study. We also used
the soil moisture measurements from Schoenenseiffen site, which is maintained by Research
Centre Juelich. The Erftverband, a non-profit water management organization in the region
provided WTD information at 43 observation wells located in the northern part of the

catchment (Figure 2a).

Three energy balance towers were installed in 2009 at the Merken test site in different
agricultural fields, namely, winter wheat, sugar beet, and barley. These towers were equipped
with eddy covariance measurement instruments. LE and H data at this site were collected
during TR32 FLUXPAT campaign in summer 2009 [e.g., Graf et al., 2010; Kessomkiat et al.,
2013; van de Boer et al., 2013].-These fluxes were also measured at the forested Wuestebach
site in 201 1. Additionally, the climate station in Merzenhausen, which is maintained by the
Research Centre Juelich, has been collecting LE data since 2011. R,.; and G measurements
were obtained from a micrometeorological tower in Selhausen. R, was measured at 2.5m

above ground, while G measurements were performed at 8 cm soil depth at this site.

4. Results and discussion

4.1 Comparison to field measurements

Figure 3 shows a comparison between observed and simulated hydrographs from January
2009 through December 2011 at the Monschau discharge gauging station. The model is
generally able to capture the timing of the peaks throughout the simulation period. During low
flow conditions, the simulation results show good agreement with the observations. However,
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the peak discharge values are underestimated in December 2010 and January 2011. The
overall model performance is depicted by a Nash-Sutcliffe value [Nash and Sutcliffe, 1970] of
NSE =0.40. As mentioned earlier, the flows on the Rur River are managed with reservoir
systems that are not considered by ParFlow.CLM. In order to estimate the influence of such
management practices on the simulation, Figure 3 also shows the comparison between the
observed and modeled hydrographs after correcting the simulated discharge by adding
measured differential releases (outflow-inflow) from Perlenbach reservoir, which is located at
the upstream reaches of the Monschau gauging station. This correction improves the
agreement between the observed and simulated hydrographs, which is reflected by a
considerably improved NSE of 0.65. Therefore, it is likely that discrepancies between the

observed and simulated hydrographs result from the management practices.

Figure 4 compares the observed and simulated soil moisture at three different test sites over
the Rur catchment. Simulated values for the comparison are derived by averaging the soil
moisture over the top two vertical model layers. Figure 4a shows the comparison at the
Wauestebach test site, demonstrating reasonable agreement between the model results and
observations without model calibration. Good agreement between observed and simulated soil
moisture in terms of magnitude and dynamics is observed from July to October in Figure 4a.
After this period, the model becomes saturated because the porosity value used in the
simulation at this location is too low [Rosenbaum et al., 2012]. Figure 4b and ¢ compares
observed and simulated soil moisture at Rollesbroich and Schoenenseiffen test sites,
respectively. The dynamics in observed soil moisture due to wetting and drying is again
reproduced well by the simulation. However, in both locations, the model generally
underestimates soil moisture. Reasons of these discrepancies may include the uncertainty in

model parameters and interpolation of the atmospheric forcing data.

13



Figure 5a shows a comparison between the observed and simulated W7D time series from
January 2009 until December 2011 at 12 selected wells. The seasonal dynamics of the
observed WTD are reproduced reasonably well by the simulation, though the model generally
predicts shallower WTD compared to the observations. This is also observed in Figure 5b,
which shows the cumulative frequency distributions of the observed and simulated mean
WTD for all 43 wells. One possible reason for this underestimation may be the coarse lateral
grid resolution of 1km, which has been discussed previously [e.g., Zhang and Montgomery,
1994; Kuo et al., 1998; Sulis et al., 2011]. As shown in Figure 2a, the 43 groundwater wells
are located in the northern flat part of the catchment. Groundwater pumping in this area may
lower the groundwater table [Bogena et al., 2005], which may also create discrepancies
between observed and simulated WTD. We did not attempt to correct the simulated WTD for

pumping because reliable information on groundwater extraction is not available.

Figure 6 shows a comparison between the average daily cycles of observed and simulated LE
and H in different months of 2009 at the Merken test site. The model performance is
reasonable in reproducing the daily cycles of LE. The dynamics in LE are captured well
throughout the measurement period with a small overestimation in mid-day during July. The
daily cycle of simulated H also shows reasonable agreement with the measured data in April.
Howeuver, for the rest of the measurement period, a systematic over prediction of day time H
1s observed. Similar results were obtained in the study by Baker et al. [2005], where the
Simple Biosphere Model (SiB2.5) overestimated H compared to eddy covariance

measurements.

We apply wavelet transform to study the temporal dynamics of the observed and simulated
LFE; because interpreting the temporal variability of complex processes from direct inspection
of the time series alone is not feasible. A brief description along with the mathematical

formulation of the wavelet transform technique is given in Appendix A. Figure 7 show the
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time-localized wavelet power and the global wavelet spectra of observed and simulated LE at
the Merzenhausen test site from July 2011 through December 2011. The observed LE time
series shows variability at 1day time scale due to the diurnal variation of incoming solar
radiation. Additionally, monthly (about 32day time scale) variability is also observed in the
measured time series. Figure 7 illustrates that the simulated time series also show variability
at these two prominent time scales, which clearly demonstrates the model’s capability of
reproducing the dynamics in LE across different time scales. This scale dependent variability
of the fluxes is the central idea behind the proposed DBF concept, which is discussed in the

following section.

In addition to LE and H, we have also compared R, and G measurements from the Selhausen
test site with model results. These comparisons are not shown here for the sake of brevity.
However, it should be mentioned that, the simulated R,., and G show good agreement with the

observations in terms of dynamics and magnitude at daily and monthly time scales.

In our comparison of the spatially distributed mass and energy flux measurements over the
Rur catchment with the simulated results, some discrepancies between observations and
model results appear, which may be improved through model tuning or comprehensive model
calibration. The comparisons are made between point measurements and cell-centered model
grid values based on a one-km resolution. While the hydrological system is heterogeneous at
all scales, we assume that cell-centered values are representative of the entire grid cells, which
constitutes a major simplifying assumption. However, comparisons between observed and
simulated time series based on similar assumptions have been presented previously in several
useful studies related to understanding the processes in hydrological cycle [e.g., Goderniaux

et al.,2009; Fan and Miguez-Macho, 2010; Shen et al., 2013].

Uncertainty in the model parameter values is expected because of the coarse grid resolution

considered in this study. Various sources of uncertainty in physics-based distributed models
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have been discussed in several studies [e.g., Beven and Binley, 1992; Moradkhani et al., 2005;
Liu and Gupta, 2007]. The influence of model parameterization on hydrological modeling
results has been studied previously in connection with parameter regionalization [e.g.,
Parajka et al., 2005; Samaniego et al., 2010]. In this study, we consider pseudo-effective
parameter values for each grid cell, which are based on our current best knowledge of the
terrestrial system. This limitation in representing the sub grid spatial heterogeneity in the
model parameter values may also contribute to discrepancies between the observed and

simulated mass and energy fluxes.

The aim of this study, however, is not to perfectly reproduce the fluxes and states of the
hydrological cycle in a best-fit sense. We attempt to produce reasonable model dynamics and
statistics (compared to the observations) to represent processes in the coupled water and
energy cycles so that the space-time variability of these processes can be analyzed. For this
purpose the agreement between the observed and simulated mass and energy balance

components is adequate.

4.2 Coherence in observed processes

In the previous section, we examined the variability of the observed LE across different time
scales using the wavelet transform technique, which agrees well with the model results
(Figure 7). In this section, we examine the coherence between observed LE and WTD using
the cross-wavelet transform technique (Appendix A). This analysis is intended to explore the

subsurface-land surface connection at different temporal scales in a time localized fashion.

Figure 8 shows the time localized cross-wavelet power of daily average measured LE and
WTD time series at the Wuestebach test site. This figure shows cross-wavelet power at a
monthly scale (about 32day) in summer (from June 2011 until August 2011). High cross-

wavelet power is also observed at about 64day time scale. Figure 8 reveals the time localized
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coherence between observed LE and WTD at two dominating time scales on the order of
months in summer. This result suggests that interconnections exist between subsurface
hydrodynamics and land surface processes at different time scales under moisture limited
conditions, which motivates the proposed DBF concept. In the following sections we

corroborate the observed coherence patterns in Figure 8 with the model results.

4.3. Analysis of simulated space-time variability

According to the DBF concept, atmosphere and groundwater act as the upper and the lower
boundary conditions, respectively, for the land surface processes. As a first step, we illustrate
the influence of atmospheric variability on simulated land surface processes at different time
scales. Figure 9 shows the time localized wavelet power of simulated R, and LE averaged
over the catchment. The 1day scale variability in R, spectrum is observed throughout the
year, although it is less pronounced in the colder months. Additionally, R, spectrum shows
variability at the 32day time scale in summer. Similar to R, the wavelet power spectrum of
LE shows temporal variability at 1day scale, indicating the connection between R,,.;and ET.
At larger time scales, LE variability does not directly correlate with R,., in summer, although

temporal patterns at about 32-64day are observed in the LE spectrum.

Figure 10 shows time localized wavelet power of catchment-averaged precipitation (P),
simulated relative surface saturation (S,), and simulated W7D. The P and S, spectra show
similar variability at time scales up to 8-16day throughout the year. The variability of P is
reflected in S, and WTD spectrum at about 16-32day time scale during February and
September, which are the major recharge periods over the catchment. The exception is
September 2010, when 16-32day variability is not visible in WTD spectrum. It should be
mentioned that, 2010 is the driest of the three simulated years. This may be the reason for the
discontinuity in the wavelet power spectrum of WTD, because simulated groundwater

recharge dropped drastically during this time period over the catchment. Additionally,
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variability in S, spectrum at 32-64day time scale is observed in summer. These results agree
with the findings of Lauzon et al. [2004], who demonstrated that the soil moisture data from
the Orgeval watershed in France shows variability at time scales greater than 16day in

summer from 1998 until 2001.

According to the DBF concept, daily LE variability (Figure 9) influences groundwater
dynamics under moisture limited conditions (Figurel, inset in WTD plot). Note that the 1day
temporal pattern is visible in the WTD wavelet power spectrum in Figure 10, which is due to
the daily groundwater contribution to meet £7 demand under soil moisture limited conditions
[e.g., Fahle and Dietrich, 2014]. Therefore, Figure 9 and 10 connect atmospheric forcing (i.e.,

R,er) and subsurface hydrodynamics to land surface energy fluxes on a 1day time scale.

Figure 11a shows the difference between simulated daily average LE,,; and LE over the
simulation period to demonstrate the influence of moisture on E7. Significant differences
between LE),,; and LE (LE,, - LE) are observed in summer, especially in 2010. As mentioned
earlier, 2010 is the driest of the three simulated years, which is the reason for the high LE,,, -
LE observed in this year. According to the DBF concept, groundwater influences LE because
of the dependence of ET on capillary rise of moisture from the free groundwater table (Figure
1). Figure 11b shows the time localized cross-wavelet power spectrum of LE,,, - LE and WTD
to illustrate this connection. This figure shows cross-wavelet power during summer at 1day
time scale, while the phase arrows indicate that the two time series generally show an anti-
phase relationship at this time scale. At the 32day time scale, consistent high cross-wavelet
power is observed in summer. At this scale, the phase arrows show that the WTD time series
slightly leads the LE,,, - LE time series, which demonstrates the feedback of WTD variability
on summer ET at this time scale. In 2010 and 2011, significant wavelet power at the time
scales greater than 64day suggests that under dry conditions, coherence between LE,,, - LE

and WTD is extended to larger time periods.
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The wavelet transform analysis above correlates the mass and energy balance components
across different time scales using the catchment-averaged time series in the context of DFB
concept. In order to demonstrate the coherence between the spatial patterns of these processes,
we present log-log unit semivariograms (i.e., power spectra [e.g., Wen and Sinding-Larsen,
1997; Gneiting et al., 2012]) of simulated LE, WTD, and R, in summer and winter over the
Rur catchment in Figure 12. Note that these semivariograms are based on the average summer

and winter time fluxes over the three simulated years (2009-2011).

The unit semivariogram of R,., does not exhibit a clear sill within the length scale of the
catchment in summer or winter. This indicates that the spatial structure of R, either follows a
power law behavior or a large-scale stationary process with a correlation scale larger than the
catchment. While the unit semivariogram of WTD shows spatial correlation for scales less
than Skm throughout the year, the LE semivariogram exhibits strong seasonal dependence. In
summer, the unit semivariogram of LE shows similar spatial pattern to that of W7D, with
correlation for scales less than Skm. During winter, on the contrary, the semivariogram of LE
shows similar behavior to that of R,., with monotonically increasing semivariance and without

a distinct sill within the length scale of the catchment.

The cross-semivariograms in Figure 13 demonstrate the spatial coherence between LE and
WTD in summer and winter. Under soil moisture limited conditions (summer), the LE and
WTD are negatively correlated for scales less than Skm, which agrees well with the univariate
semivariograms for these variables (Figure 12). In winter, on the other hand, LE and WTD
show weaker positive correlation and the cross-semivariogram does not exhibit a clear sill

within'the length scale of the catchment.

According to the proposed DBF concept, the groundwater influence on ET is observed under
soil moisture limited conditions. The variogram analysis illustrates groundwater and

atmospheric forcing control on the spatial pattern of LE in summer and winter, respectively.
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The negative correlation between LE and WTD in Figure 13 demonstrates the interconnection
between the spatial patterns of groundwater and £E7 under dry conditions. This negative
correlation exists due to higher ET at locations with shallower groundwater table depth and
vice-versa, which suggests the groundwater control on the spatial pattern of summer E7. In
winter, LFE semivariogram shows similar behavior to that of R, (Figure 12) because of the

prevailing energy limited conditions over the catchment during the colder months of the year.

5. Summary and conclusions

In this study, the concept of the dual-boundary forcing (DBF) is proposed to describe and
quantify the feedback mechanisms between different compartments of the hydrological cycle
in space and time. According to the proposed DBF concept, the atmosphere and groundwater
act as the upper and lower boundary conditions, respectively, for land surface processes.
These boundary conditions influence the land surface at different space-time scales. The

availability of energy and moisture determines the dominating boundary condition for the

exchange processes.

The coupled subsurface-land surface model ParFlow.CLM was applied on the Rur catchment,
Germany, and the space-time patterns of the mass and energy fluxes were analyzed using
wavelet transform and variogram techniques to verify this concept. Prior to this analysis, a
comparison between the model results and observations was performed, which shows
reasonable agreement for different mass and energy fluxes even without comprehensive
model calibration. While uncertainties in the simulation results may arise from model
structure, parameters, and atmospheric forcing data, ParFlow.CLM is forced by re-analysis
datasets from COSMO-DE and ensures closure of the mass and energy balances resulting in

an internally consistent description of the relevant process, system dynamics and feedbacks.
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The results suggest that at the daily time scale, ET variability is driven by the radiative
atmospheric forcing (R,.,). This variability of ET influences the subsurface hydrodynamics
and creates the diurnal W7D fluctuation through daily water uptake under moisture limited
conditions, which is analogous to periodic pumping of groundwater. Groundwater storage, on
the other hand, depletes due to this withdrawal and influences £7 mainly at the monthly time
scale under moisture limited conditions in summer. It was also demonstrated that this

influence extends to multi-month time scales in dry periods.

It should be mentioned that the groundwater control on £7 may be significant at even longer
time scales due to the long term memory effect of subsurface hydrodynamics under e.g.,
prolonged drought conditions. This influence was not considered here due to data limitation,
because the simulation was performed and compared to measured data over three years (2009-
2011). However, this effect can also be interrogated utilizing the proposed techniques with

extended time series of fluxes and states, which is planned in future.

The variogram analysis demonstrates the seasonal dependence of spatial variability of ET.
Under energy limited conditions, the spatial pattern of ET is determined by R, Strong
influence of groundwater on the spatial variability of ET is observed under moisture limited
conditions. These findings suggest that, water table observations are useful in predicting the
spatial pattern of £7 in summer. In winter, however, the spatial pattern of E7 may be

predicted from R,., measurements alone (e.g., from remote sensing observations).

It has been discussed earlier that the simulation results may be affected by the coupled model
structure, grid resolution, parameterization, and interpolation of atmospheric forcing data.
There is a need of a comprehensive sensitivity and uncertainty analysis study to assess the
impact of the aforementioned issues on DBF concept, which would require novel, non-
traditional approaches and large computer resources. This is beyond the scope of the current

study and should be the subject of future research.
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Appendix A

A.1 Variogram analysis

In this study, the spatial variability of different fluxes in the coupled water and energy cycles
are analyzed using semivariograms. According to Goovaerts [1997], the experimental

semivariogram for a spatially distributed attribute z is calculated as

N(h)

NG ; [z(uet)— z(uor + h)]

y(h) =

where £ is the lag distance, N is the number of pairs, and u is measurement location. The

cross-semivariogram between z, and z, is calculated as
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N(h)

Z [za(uer) — za(uar + h)] | zo(uex) — zo(uor + h))

M= N &

In this study, we calculate omni-directional variograms, which assumes that the data is

isotropic.
A.2 Continuous wavelet transform analysis

The wavelet transform is a useful tool in analyzing time series variability and has been used
previously to analyze various geophysical data [e.g., Andreo et al., 2006; Liu et al., 2011;
Perez-Valdivia et al., 2012]. We use continuous wavelet transform analysis to show the time
localized temporal variance of different processes as a function of frequency. If x, is a
timeseries (n = 0 ... N-1) with an equal time spacing of d¢, according to Torrence and Compo
[1997], the continuous wavelet transform of x,, can be defined as its convolution with a scaled
and translated version of a wavelet function y,(77)

(n'—n)é‘t}

N

N-1
Wn(s) = Z Xn'l//o *|:
n’=0

where s is the wavelet scale and (*) denotes the complex conjugate. The wavelet function
depends on the non-dimensional time parameter #. In this study, we use the Morlet wavelet as

the wavelet function, which can be expressed as

v, (77) — 7[—1/461'%;76—;72/2

where @, is the non-dimensional frequency. The global wavelet power is obtained by

averaging the wavelet powers over the localized time instances and can be defined as

N-1

W’ (s) =%Z|Wn(s)|2

n=0

The cross-wavelet spectrum of two time series x and y can be defined as
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W2 = () %(s)

where W' (s)and W (s) denote the wavelet transform of x and y, respectively. According to

Torrence and Compo [1997], high cross-wavelet power indicates covariance between the time
series. Grinsted et al. [2004] argued that a phase locked phenomenon with high cross-wavelet

power implies a cause and effect relationship between two time series.
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List of Figures

Figure. 1. Schematic of the proposed dual boundary forcing (DBF) concept. Hypothetical time
series of atmospheric (R,.), land surface (LE), and subsurface (WTD) processes are
partitioned based on the energy and moisture availability. The shaded area in each plot
indicates the energy limited period. The inset in WTD time series shows the high frequency

variability of subsurface hydrodynamics under moisture limited conditions.

Figure 2. Location and topography (a), vegetation cover (b), and soil texture (c) information
of the Rur catchment. The blue lines and the legends on the topography show the river

network and the locations of the measurement stations, respectively.

Figure 3. Precipitation (top) and observed and simulated hydrographs (bottom) at the
Monschau discharge gauging station. The corrected discharge is calculated by adding
measured differential releases (outflow-inflow) from the Perlenbach reservoir to the simulated

data.

Figure 4. Observed and simulated soil moisture at Wuestebach (a), Rollesbroich (b), and

Schoenenseiffen (c) test sites.

Figure 5. Observed and simulated groundwater table depth, WTD time series at 12 selected
groundwater wells (a), and cumulative frequency distributions of the observed and simulated

WTD.(b).

Figure 6. Observed and simulated average daily cycles of latent heat flux, LF, and sensible
heat flux, H at the Merken test site. The solid black lines show the mean values of simulated
data. The red lines and shaded areas show the mean and standard deviation of observed flux,

respectively.
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Figure 7. Wavelet transform of observed and simulated latent heat flux, LE, at the
Merzenhausen test site. The time localized power is shown in the left panels. The cone of
influence is indicated with the thick black lines in these plots. The right panels show the

global wavelet power.

Figure 8. Time localized cross-wavelet power of daily average observed latent heat flux, LE,

and groundwater table depth, WTD time series at the Wuestebach test site.

Figure 9. Time localized wavelet power of net radiation, R,.,, and latent heat flux, LE.

Figure 10. Time localized wavelet power of Precipitation, P, relative surface saturation, S,,
and groundwater table depth, WTD. The enlarged part of WTD spectrum (from January 2010

until December 2011) shows the power with small amplitude at 1-4.5day time scale.

Figure 11. Difference between daily average simulated potential and actual latent heat flux,
LE, .- LE (a), and time localized cross-wavelet power of LE,,, - LE and water table depth,

WTD, over the simulation period. The arrows show the phase relationship between the two
time series (right arrow: in phase; left arrow: anti-phase; up arrow: LE,,, - LE is leading by

90°; and down arrow: WTD is leading by 90°).

Figure 12. Unit semivariograms of latent heat flux, LE, groundwater table depth, WTD, and

net radiation, R,., in summer and winter. Note the log-log scale.

Figure 13. Cross-semivariograms of latent heat flux, LE, and groundwater table depth, WTD

in summer and winter. Note the dual y-axis.
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Tables

Table 1. Soil hydraulic parameters of the homogeneous deep subsurface.

Parameter name Parameter value Unit

Saturated hydraulic conductivity, kg 6.4x10° ms”
Porosity, ¢ 0.44 -

van Genuchten parameter, o 2.1 m’
van Genuchten parameter, n 3.0 -
Residual saturation, S, 0.1 -
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Table 2. Soil hydraulic parameters of shallow subsurface.

Texture K., [ms™] ] a[m’] n Ses
Silty clay 8.3x107 0.389 2.7 2.0 0.2
Silt loam 3.9x10° 0.441 2.1 3.0 0.1
Clay loam 1.1x10° 0.354 2.1 2.0 0.15
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Table 3. Location, temporal extent, measurement frequency, and source of the field

measurements.
Data Location Temporal extent Frequency Source
Discharge Monschau 01.01.2009 - 31.12.2009 Daily LANUV
Soil moisture Wuestebach 01.07.2009 - 31.12.2009 15 min TERENO
Soil moisture Rollesbroich 05.05.2011 - 31.12.2011 15 min TERENO
Soil moisture Schoenenseiffen  01.01.2010 - 31.12.2011 10 min TERENO
Water table depth ¥ 01.01.2009 - 31.12.2009  Weekly - Monthly LANUV
Water table depth Wuestebach 01.01.2011 -31.12 2011 Daily TERENO
Latent heat flux Merken 01.04.2009 - 31.08.2009 30 min TR32 database
Latent heat flux Wuestebach 18.02.2011 - 31.12.2011 30 min Uni. Trier
Latent heat flux Merzenhausen 01.07.2011 - 31.12.2011 30 min TERENO
Sensible heat flux Merken 01.04.2009 - 31.08.2009 30 min TR32 database
Net radiation Selhausen 01.01.2009 - 31.12.2009 60 min TERENO
Ground heat flux Selhausen 01.01.2009 - 31.12.2009 60 min TERENO

*The locations are shown in Figure 2a
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Figure 1. Schematic of the proposed dual boundary forcing (DBF) concept. Hypothetical time
series of atmospheric (R,.), land surface (LE), and subsurface (WTD) processes are
partitioned based on the energy and moisture availability. The shaded area in each plot
indicates the energy limited period. The inset in WTD time series shows the high frequency

variability of subsurface hydrodynamics under moisture limited conditions.
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Figure 2. Location and topography (a), vegetation cover (b), and soil texture (c) information
of the Rur catchment. The blue lines and the legends on the topography show the river

network and the locations of the measurement stations, respectively.
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Figure 3. Precipitation (top) and observed and simulated hydrographs (bottom) at the
Monschau discharge gauging station. The corrected discharge is calculated by adding

measured differential releases (outflow-inflow) from the Perlenbach reservoir to the simulated

data.
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Figure 4. Observed and simulated soil moisture at Wuestebach (a), Rollesbroich (b), and

Schoenenseiffen (c) test sites.
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groundwater wells (a), and cumulative frequency distributions of the observed and simulated

WTD (b).
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Figure 6. Observed and simulated average daily cycles of latent heat flux, LE, and sensible
heat flux, H at the Merken test site. The solid black lines show the mean values of simulated

data. The red lines and shaded areas show the mean and standard deviation of observed flux,

respectively.
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Figure 7. Wavelet transform of observed and simulated latent heat flux, LE, at the
Merzenhausen test site. The time localized power is shown in the left panels. The cone of
influence is indicated with the thick black lines in these plots. The right panels show the

global wavelet power.
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Figure 8. Time localized cross-wavelet power of daily average observed latent heat flux, LE,

and groundwater table depth, WTD time series at the Wuestebach test site.
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Figure 9. Time localized wavelet power of net radiation, R,.,, and latent heat flux, LE.
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Figure 10. Time localized wavelet power of Precipitation, P, relative surface saturation, S,,
and groundwater table depth WTD. The enlarged part of WTD spectrum (from January 2010

until. December 2011) shows the power with small amplitude at 1-4.5day time scale.
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Figure 11. Difference between daily average simulated potential and actual latent heat flux,
LE,, - LE (a), and time localized cross-wavelet power of LE,,,- LE and water table depth,

WTD; over the simulation period. The arrows show the phase relationship between the two
time series (right arrow: in phase; left arrow: anti-phase; up arrow: LE,,, - LE is leading by

90°; and down arrow: WTD is leading by 90°).
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Figure 12. Unit semivariograms of latent heat flux, LE, groundwater table depth, W7D, and

net radiation, R,., in summer and winter. Note the log-log scale.
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in summer and winter. Note the dual y-axis.
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