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Abstract 

Terrestrial hydrological processes interact in a complex, non-linear fashion. It is important to 

quantify these interactions to understand the overall mechanisms of the coupled water and 

energy cycles. In this study, the concept of a dual boundary forcing is proposed that connects 

the variability of atmospheric (upper boundary) and subsurface (lower boundary) processes to 

the land surface mass and energy balance components. According to this concept, the space-

time patterns of land surface mass and energy fluxes can be explained by the variability of the 

dominating boundary condition for the exchange processes, which is determined by moisture 

and energy availability. A coupled subsurface-land surface model is applied on the Rur 

catchment, Germany, to substantiate the proposed concept. Spectral and geostatistical analysis 

on the observations and model results show the coherence of different processes at various 

space-time scales in the hydrological cycle. The spectral analysis shows that atmospheric 

radiative forcing generally drives the variability of the land surface energy fluxes at the daily 

time scale, while influence of subsurface hydrodynamics is significant at monthly to multi-

month time scales under moisture limited conditions. The geostatistical analysis demonstrates 

that atmospheric forcing and groundwater control the spatial variability of land surface 

processes under energy and moisture limited conditions, respectively. These results suggest 

that under moisture limited conditions, groundwater influences the variability of the land 

surface mass and energy fluxes. Under energy limited conditions, on the contrary, variability 

of land surface processes can be explained by atmospheric forcing alone. 
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 1. Introduction 

Atmospheric and subsurface processes show variability at different space-time scales [e.g., 

Kumar and Georgiou, 1993; Haddad et al., 2004; Gundogdu and Guney, 2007; Táany et al., 

2009; Beecham and Chowdhury, 2010]. Land surface connects these two compartments (i.e., 

atmosphere and subsurface) of the hydrological cycle. Because of the direct interactions, land 

surface processes (e.g., evapotranspiration, ET and sensible heat transfer) are influenced by 

the variability of atmosphere and subsurface hydrodynamics.  

The connection between subsurface hydrodynamics and land surface mass and energy fluxes 

has been a subject of research for some time [e.g., Tian et al., 2012; Niu et al., 2013]. Sklash 

and Farvolden [1979] discussed the important role of groundwater on surface runoff 

generation using observations and simulation results. Liang et al. [2003] showed the impact of 

the surface water-groundwater interactions on land surface processes. Maxwell and Miller 

[2005] demonstrated the effect of including detailed subsurface hydrodynamics in a land 

surface parameterization scheme for simulating the coupled water and energy cycles. Kollet 

and Maxwell [2008] studied the influence of groundwater dynamics on land surface energy 

fluxes and proposed a critical water table depth (WTD) zone where the effect is significant 

along hillslopes. Similar relationship between ET and WTD was found by Szilagyi et al. 

[2013], who used observations from Platte river valley, USA. Observations [Yeh and Eltahir, 

2005] and model results [e.g., Miguez-Macho and Fan, 2012a] also reveal the role of 

groundwater as a modulator of surface runoff. The groundwater control on ET through 

shallow soil moisture has been investigated explicitly in several studies [e.g., Chen and Hu, 

2004; Soylu et al., 2011]. Lam et al. [2011] studied the spatial and temporal connection 

between groundwater dynamics and ET and showed the importance of groundwater 

contribution towards dry season evaporation. The study by Miguez-Macho and Fan [2012b] 

demonstrated the influence of groundwater on ET at a seasonal scale and discussed different 
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mechanisms responsible for this phenomenon. Several studies have demonstrated the scaling  

properties of groundwater dynamics and showed the connection with surface water system  

[e.g., Little and Bloomfield, 2010; Schilling and Zhang, 2012] and energy fluxes [e.g., Amenu  

et al., 2005].  

The interaction between land surface processes and atmospheric variables has also been  

studied previously [e.g., Brubaker and Entekhabi, 1996; Betts et al., 1996; Porporato et al.,  

2000]. Several studies demonstrated the effect of land surface soil moisture [e.g., Manabe and  

Delworth, 1990; Rowell and Blondin, 1990; Findell and Eltahir, 1997; Seuffert et al., 2002;  

Gedney and Cox, 2003; Zhang et al., 2008] and groundwater dynamics [e.g., Maxwell et al.,  

2007; Yuan et al., 2008] on atmospheric processes. The important role of groundwater  

dynamics on land-atmosphere moisture feedback was discussed by York et al. [2002]. Anyah  

et al. [2008] showed the effect of subsurface hydrodynamics on coupled land-atmosphere  

variability and argued that a shallow groundwater table tends to enhance ET in arid regions,  

which eventually leads to increased precipitation. Ferguson and Wood [2011] used global  

satellite remote sensing data to identify the regions where land-atmosphere coupling persists.  

Phillips and Klein [2014] used the observations from Southern Great Plains, USA, and  

showed the influence of atmospheric forcing on land surface processes at daily time scale.   

The aforementioned studies suggest that interconnections exist between different  

compartments of the terrestrial hydrological cycle (i.e., subsurface, land surface, and  

atmosphere). However, quantifying these interconnections between the compartmental mass  

and energy fluxes is complicated. This is mainly due to the diverse space-time scales  

associated with the processes that comprise this system, which has been discussed previously  

in relation to the variability in atmospheric [e.g., Matsoukas et al., 2000; Hsu and Li, 2010],  

land surface [e.g., Smith et al., 1998; Labat et al., 2005; Ding et al., 2013] and subsurface  
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[e.g., Liang and Zhang, 2013] processes, as well as land-atmosphere interactions [e.g.,  

Delworth and Manabe, 1993; Wu and Dickinson, 2004].  

In this context, we propose the concept of a dual-boundary forcing (DBF) to represent and  

quantify the interactions between the compartmental mass and energy balance components at  

the relevant space and time scales. Arguably, it is not feasible to fully characterize these  

interactions with observations. Continuous measurements of all the fluxes and states from  

each compartment of the hydrological cycle covering the entire catchment for extended time  

periods would be required for this purpose, which are generally not available [e.g.,  

Seneviratne and Stöckli, 2008; Fernández-Prieto et al., 2013]. Therefore, to support the  

proposed concept, we apply the coupled subsurface-land surface model ParFlow.CLM  

[Maxwell and Miller, 2005; Kollet and Maxwell, 2008] to a regional scale catchment (on the  

order of 103km2) in Germany to simulate the spatially distributed mass and energy fluxes in  

the hydrological cycle over three consecutive years (2009-2011). The coupled model consists  

of the groundwater/surface water flow model ParFlow [Ashby and Falgout, 1996; Jones and  

Woodward, 2001; Kollet and Maxwell, 2006] and the Common Land Model (CLM, [Dai et  

al., 2003]). In the first step, we demonstrate the model’s capability to represent the magnitude  

and dynamics of different processes in the hydrological cycle by comparing the model results  

with spatially-distributed measurements. In ensuing steps, we analyze measured and  

simulated mass and energy fluxes using spectral and geostatistical analysis techniques. The 

results illustrate scale-dependent coherence between groundwater dynamics and land surface 

processes, which substantiate the proposed DBF concept. 

2. Conceptual approach 

The underlying hypothesis of this study is that the land surface processes are influenced by a 

DBF at different space-time scales. According to this hypothesis, the atmosphere and 
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groundwater act as the upper and the lower boundaries, respectively. The availability of 

energy and moisture determines which boundary condition dominates the exchange processes. 

The land surface reacts and interacts at the interface between the free atmosphere and 

subsurface to adapt or transform the variability of the processes associated with those 

boundaries. Therefore, the space-time patterns in land surface processes can be in large parts 

explained by the variability of the dominant boundary condition at the respective space and 

time scales, when accounting for major non-linear feedbacks. 

Figure 1 shows a schematic of the proposed DBF concept. Hypothetical time series of 

atmospheric and land surface (net radiation, Rnet; latent heat flux, LE; and potential latent heat 

flux, LEpot), and subsurface (groundwater table depth, WTD) fluxes and states are shown in 

this figure. Coherence between atmospheric and land surface processes is observed under both 

energy limited and moisture limited conditions. Under energy limited conditions, LE agrees 

well with LEpot because moisture is abundant. Under moisture limited conditions, the 

groundwater contribution becomes essential to meet the daily ET demand. Because of this 

dependence, the high frequency (daily) variability of land surface energy fluxes is propagated 

into the subsurface, generating the variability in subsurface hydrodynamics at the respective 

time scale [e.g., Gribovszki et al., 2010; Fahle and Dietrich, 2014]. The subsurface 

hydrodynamics, in contrast, influence the low frequency variability of the land surface 

processes under soil moisture limited conditions resulting in the increasing difference between 

LEpot and LE in Figure 1. The controlling effect of the low frequency variability of subsurface 

hydrodynamics on land surface energy fluxes has been discussed by Amenu et al. [2005], who 

also suggested that this influence may be significant under dry conditions. 

The proposed concept may be corroborated via the analysis of in-situ observations and 

physics based simulations of moisture and energy states and fluxes. It should be mentioned 

that the DBF concept may be simplified compared to the actual non-linear feedbacks between 
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the mass and energy balance components in the hydrological cycles. In this study, we applied 

a physics based distributed model, which incorporates mathematical formulations to represent 

complex processes of the coupled terrestrial hydrological and energy cycles to the best of our 

current knowledge. There is uncertainty with respect to model parameterization and structure, 

input parameters, and space/time discretization of the governing partial differential equations 

[e.g., Vrugt et al., 2005]. Accounting for all sources of uncertainty is not feasible in the 

current modeling framework, because of the limitations of computational resources. However, 

the capability of the model to reproduce the major states and fluxes is tested by comparing the 

results with measured data from the experimental catchment. Additionally, there may be 

significant feedbacks from the land surface processes and subsurface hydrodynamics to the 

free atmosphere, which may also affect the connections between the mass and energy balance 

components at different space-time scales. We do not consider these here, because the model 

is forced with the atmospheric variables in offline mode.  

3. Methods 

3.1 The study area: Rur catchment 

The study area is the Rur catchment (Figure 2a), which is located in western Germany with an 

area of about 2,400km2. The Rur River has a length of some 165km with headwaters located 

in Belgium and discharge into the Meuse River near Maastricht. The northern part of the 

catchment is characterized by flat lowland regions, which is a part of the Belgium-Germany 

loess belt formed by unconsolidated rock deposits. Agriculture is the major land use type in 

this part of the catchment. This flat region receives an annual precipitation of approximately 

600-800mm and contributes to a potential ET of approximately 550-600mm/a [Bogena et al., 

2005]. 
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The southern part of the catchment is characterized by the mountainous Eifel region, where 

Palaeozoic and Mesozoic rock outcrops. Compared to the northern lowlands, this 

mountainous region is characterized by a higher precipitation amount of more than 1200mm/a 

and a lower potential ET amount of approximately 550mm/a [Bogena et al., 2005]. The Eifel 

is heavily forested with coniferous trees. A distinct difference in the mean annual temperature 

between the northern (8.5-10.5°C) and the southern (7.0-9.0°C) part of the catchment is 

observed due a 600m difference in elevation.   

3.2 The coupled model: ParFlow.CLM 

ParFlow is an integrated, parallel, variably saturated groundwater flow model that solves the 

Richards’ equation [Richards, 1931] in three spatial dimensions: 

                                                   ( )
sS S

t t
θ ψψθ φ

∂∂ + = ∇⋅ +
∂ ∂

q                                                (1) 

                                                        ( ) ( ) ( )rk x k zψ ψ= − ∇ −q                                                    (2) 

where Ss is specific storage [m-1], θ is soil moisture [-], ψ is pressure head [m], t is time [s], ɸ 

is porosity [-], q is water flux [ms-1], S is general source/sink term [s-1], k(x) is saturated 

hydraulic conductivity [ms-1], k(r) is relative permeability [-], and z is depth below surface 

[m]. ParFlow uses a cell-centered finite-difference/finite control volume scheme in space and 

an implicit backward Euler scheme in time to solve this equation. The surface flow is 

integrated by applying a free surface overland flow boundary condition at the land surface 

[Kollet and Maxwell, 2006]. The kinematic wave equation is solved maintaining the 

continuity of pressure and flux at the boundary. A terrain following vertical grid can be used 

in ParFlow honoring the topographic slopes in an approximate fashion [Maxwell, 2013]. 

The land surface model CLM is coupled with ParFlow to simulate land surface mass and 

energy balance components [Maxwell and Miller, 2005; Kollet and Maxwell, 2008]. Vertical 
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mass, energy, and momentum fluxes are described by the Monin-Obukhov similarity principle 

in CLM. The energy balance equation in CLM can be written as: 

                                                  ( ) ( ) ( ) ( )netR LE H Gθ θ θ θ= + +                                               (3) 

where Rnet is net radiation [Wm-2], LE is latent heat flux [Wm-2], H is sensible heat flux [Wm-

2], and G is ground heat flux [Wm-2]. This equation is written as a function of θ to 

demonstrate the connection between land surface energy balance and subsurface 

hydrodynamics. The source/sink term S in equation (1) corresponds to the moisture dependent 

LE in equation (3). The surface heat transfer in CLM is simulated by solving the heat 

diffusion equation. G is applied as the top boundary condition to solve this equation at the 

land surface and obtained as the residual of equation (3), which closes the energy balance. It 

should be mentioned that, CLM considers only conduction process in simulating subsurface 

energy transport ignoring convection, which eventually decouples the heat transport from the 

moisture transport in the coupled model [Kollet et al., 2009]. The land surface model CLM is 

forced with atmospheric variables including precipitation rate, radiation, temperature, 

barometric pressure, wind speed, and humidity. The off-line coupling scheme considered in 

this study assumes that, these atmospheric variables do not change due to transient land 

surface conditions [Kollet, 2009]. This assumption may influence the mass and energy fluxes 

simulated by the model because of the non-linear feedback mechanisms between different 

compartments mentioned before. Dai et al. [2001] describes the parameterizations in CLM in 

details. 

In the coupled modeling framework, ParFlow replaces the simplified hydrological scheme in 

CLM and simulates subsurface hydrodynamics along with surface runoff. In return, CLM 

calculates the non-linear source/sink terms of soil moisture (e.g., infiltration from 

precipitation and ET, respectively) for ParFlow. At every 1h time step, the two coupled model 
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components exchange fluxes and shallow soil moisture distributions in an operator splitting 

approach. 

3.3 Rur model setup 

The ParFlow.CLM model is applied over a model domain encompassing the Rur catchment. 

A total subsurface depth of 50m is considered in the model, with a variable vertical 

discretization ranging from 4×10-2m at the land surface to 2×100m at the bottom of the model 

domain using the aforementioned terrain following grid implementation. Laterally, the model 

has a uniform grid resolution (∆x=∆y) of 1km with 168 ×168 cells in x and y dimensions, 

respectively. No-flow lateral and bottom boundary conditions are applied to the model 

domain. At the land surface, a free surface overland flow boundary condition is used [Kollet 

and Maxwell, 2006]. 

We obtain spatially distributed vegetation cover information (Figure 2b) for the model 

domain from the Global Land Cover 2000 (1km spatial resolution) digital database 

(GLC2000, European Commission, Joint Research Centre, 2003), with plant parameters 

derived following the International Geosphere-Biosphere Program (IGBP) standard. The 

deeper subsurface in the model is homogeneous with parameter values (Table 1) obtained 

from Gleeson et al. [2011]. Digital Soil Map of the World (DSMW) provided by the Food and 

Agricultural Organization of UNO (FAO) and the Euro-soil database information [e.g., 

Dolfing and Scheltens, 1999] are used to represent the texture of different soil types in the 

shallow subsurface (Figure 2c). The van Genuchten function represents the saturation 

pressure head relationship for different soil types in the model [van Genuchten, 1980], with 

parameter values (Table 2) obtained from Schaap and Leij [1998].  

The simulation period extends from January 2009 until December 2011 with a time resolution 

of one hour. Atmospheric variables are obtained from the COSMO-DE re-analysis data set of 
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the German Weather Service (DWD). We apply linear interpolation to downscale these 

atmospheric variables to the model grid resolution of 1km, because COSMO-DE operates at a 

lateral grid resolution of 2.8km. A model spin-up is performed to achieve a realistic initial 

condition. For this purpose, the model is initialized with an arbitrary uniform water table 

depth of 5m below ground surface. With this setup, repeated model runs are performed using 

the hourly atmospheric forcing data of 2009 to reach a dynamic equilibrium, which required 

about 20 years of simulation time.  

3.4 Field measurements 

The Rur catchment is the central research area for the Transregional Collaborative Research 

Centre, TR32 [Vereecken et al., 2010]. It is also the central monitoring site of the Eifel/Lower 

Rhine valley observatory of the Terrestrial Environmental Observatories, TERENO [Bogena 

et al., 2006], which is coordinated at the Research Centre Juelich (Forschungszentrum 

Juelich). This catchment has well-established measurement facilities for monitoring the mass 

and energy balance components from the subsurface into the atmosphere. The observations 

used in this study are summarized in Table 3. The geographic locations of the measurement 

sites are shown in Figure 2a.  

River discharge measurements are obtained from the Nature, Environment, and Consumer 

Protection Agency (LANUV) of North Rhine-Westphalia, Germany, which collects discharge 

information at several gauging stations along the Rur River. There are large reservoir systems 

in the mountainous southern part of the catchment, which influence the downstream flow 

considerably. Therefore, we chose the Monschau, a gauging station at the upstream reaches of 

the river for comparison with the simulated discharge, which is arguably less influenced by 

the management practices. 
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A state-of-the-art wireless sensor network was installed at the forested sub-catchment 

Wuestebach in 2009 to gather continuous, spatially distributed soil moisture information at 

three different soil depths (5cm, 20cm and 50cm) [e.g., Bogena et al., 2010; Rosenbaum et al., 

2012]. Similar sensor network was also installed at the Rollesbroich test site in 2011. We used 

the average soil moisture information from these sensor networks in this study. We also used 

the soil moisture measurements from Schoenenseiffen site, which is maintained by Research 

Centre Juelich. The Erftverband, a non-profit water management organization in the region 

provided WTD information at 43 observation wells located in the northern part of the 

catchment (Figure 2a). 

Three energy balance towers were installed in 2009 at the Merken test site in different 

agricultural fields, namely, winter wheat, sugar beet, and barley. These towers were equipped 

with eddy covariance measurement instruments. LE and H data at this site were collected 

during TR32 FLUXPAT campaign in summer 2009 [e.g., Graf et al., 2010; Kessomkiat et al., 

2013; van de Boer et al., 2013]. These fluxes were also measured at the forested Wuestebach 

site in 2011. Additionally, the climate station in Merzenhausen, which is maintained by the 

Research Centre Juelich, has been collecting LE data since 2011. Rnet and G measurements 

were obtained from a micrometeorological tower in Selhausen. Rnet was measured at 2.5m 

above ground, while G measurements were performed at 8 cm soil depth at this site. 

4. Results and discussion 

4.1 Comparison to field measurements 

Figure 3 shows a comparison between observed and simulated hydrographs from January 

2009 through December 2011 at the Monschau discharge gauging station. The model is 

generally able to capture the timing of the peaks throughout the simulation period. During low 

flow conditions, the simulation results show good agreement with the observations. However, 
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the peak discharge values are underestimated in December 2010 and January 2011. The 

overall model performance is depicted by a Nash-Sutcliffe value [Nash and Sutcliffe, 1970] of 

NSE =0.40. As mentioned earlier, the flows on the Rur River are managed with reservoir 

systems that are not considered by ParFlow.CLM. In order to estimate the influence of such 

management practices on the simulation, Figure 3 also shows the comparison between the 

observed and modeled hydrographs after correcting the simulated discharge by adding 

measured differential releases (outflow-inflow) from Perlenbach reservoir, which is located at 

the upstream reaches of the Monschau gauging station. This correction improves the 

agreement between the observed and simulated hydrographs, which is reflected by a 

considerably improved NSE of 0.65. Therefore, it is likely that discrepancies between the 

observed and simulated hydrographs result from the management practices.  

Figure 4 compares the observed and simulated soil moisture at three different test sites over 

the Rur catchment. Simulated values for the comparison are derived by averaging the soil 

moisture over the top two vertical model layers. Figure 4a shows the comparison at the 

Wuestebach test site, demonstrating reasonable agreement between the model results and 

observations without model calibration. Good agreement between observed and simulated soil 

moisture in terms of magnitude and dynamics is observed from July to October in Figure 4a. 

After this period, the model becomes saturated because the porosity value used in the 

simulation at this location is too low [Rosenbaum et al., 2012]. Figure 4b and c compares 

observed and simulated soil moisture at Rollesbroich and Schoenenseiffen test sites, 

respectively. The dynamics in observed soil moisture due to wetting and drying is again 

reproduced well by the simulation. However, in both locations, the model generally 

underestimates soil moisture. Reasons of these discrepancies may include the uncertainty in 

model parameters and interpolation of the atmospheric forcing data. 
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Figure 5a shows a comparison between the observed and simulated WTD time series from 

January 2009 until December 2011 at 12 selected wells. The seasonal dynamics of the 

observed WTD are reproduced reasonably well by the simulation, though the model generally 

predicts shallower WTD compared to the observations. This is also observed in Figure 5b, 

which shows the cumulative frequency distributions of the observed and simulated mean 

WTD for all 43 wells. One possible reason for this underestimation may be the coarse lateral 

grid resolution of 1km, which has been discussed previously [e.g., Zhang and Montgomery, 

1994; Kuo et al., 1998; Sulis et al., 2011]. As shown in Figure 2a, the 43 groundwater wells 

are located in the northern flat part of the catchment. Groundwater pumping in this area may 

lower the groundwater table [Bogena et al., 2005], which may also create discrepancies 

between observed and simulated WTD. We did not attempt to correct the simulated WTD for 

pumping because reliable information on groundwater extraction is not available. 

Figure 6 shows a comparison between the average daily cycles of observed and simulated LE 

and H in different months of 2009 at the Merken test site. The model performance is 

reasonable in reproducing the daily cycles of LE. The dynamics in LE are captured well 

throughout the measurement period with a small overestimation in mid-day during July. The 

daily cycle of simulated H also shows reasonable agreement with the measured data in April. 

However, for the rest of the measurement period, a systematic over prediction of day time H 

is observed. Similar results were obtained in the study by Baker et al. [2005], where the 

Simple Biosphere Model (SiB2.5) overestimated H compared to eddy covariance 

measurements.  

We apply wavelet transform to study the temporal dynamics of the observed and simulated 

LE; because interpreting the temporal variability of complex processes from direct inspection 

of the time series alone is not feasible. A brief description along with the mathematical 

formulation of the wavelet transform technique is given in Appendix A. Figure 7 show the 
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time-localized wavelet power and the global wavelet spectra of observed and simulated LE at 

the Merzenhausen test site from July 2011 through December 2011. The observed LE time 

series shows variability at 1day time scale due to the diurnal variation of incoming solar 

radiation. Additionally, monthly (about 32day time scale) variability is also observed in the 

measured time series. Figure 7 illustrates that the simulated time series also show variability 

at these two prominent time scales, which clearly demonstrates the model’s capability of 

reproducing the dynamics in LE across different time scales. This scale dependent variability 

of the fluxes is the central idea behind the proposed DBF concept, which is discussed in the 

following section.  

In addition to LE and H, we have also compared Rnet and G measurements from the Selhausen 

test site with model results. These comparisons are not shown here for the sake of brevity. 

However, it should be mentioned that, the simulated Rnet and G show good agreement with the 

observations in terms of dynamics and magnitude at daily and monthly time scales. 

In our comparison of the spatially distributed mass and energy flux measurements over the 

Rur catchment with the simulated results, some discrepancies between observations and 

model results appear, which may be improved through model tuning or comprehensive model 

calibration. The comparisons are made between point measurements and cell-centered model 

grid values based on a one-km resolution. While the hydrological system is heterogeneous at 

all scales, we assume that cell-centered values are representative of the entire grid cells, which 

constitutes a major simplifying assumption. However, comparisons between observed and 

simulated time series based on similar assumptions have been presented previously in several 

useful studies related to understanding the processes in hydrological cycle [e.g., Goderniaux 

et al., 2009; Fan and Miguez-Macho, 2010; Shen et al., 2013].  

Uncertainty in the model parameter values is expected because of the coarse grid resolution 

considered in this study. Various sources of uncertainty in physics-based distributed models 
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have been discussed in several studies [e.g., Beven and Binley, 1992; Moradkhani et al., 2005; 

Liu and Gupta, 2007]. The influence of model parameterization on hydrological modeling 

results has been studied previously in connection with parameter regionalization [e.g., 

Parajka et al., 2005; Samaniego et al., 2010]. In this study, we consider pseudo-effective 

parameter values for each grid cell, which are based on our current best knowledge of the 

terrestrial system. This limitation in representing the sub grid spatial heterogeneity in the 

model parameter values may also contribute to discrepancies between the observed and 

simulated mass and energy fluxes.  

The aim of this study, however, is not to perfectly reproduce the fluxes and states of the 

hydrological cycle in a best-fit sense. We attempt to produce reasonable model dynamics and 

statistics (compared to the observations) to represent processes in the coupled water and 

energy cycles so that the space-time variability of these processes can be analyzed. For this 

purpose the agreement between the observed and simulated mass and energy balance 

components is adequate.  

4.2 Coherence in observed processes 

In the previous section, we examined the variability of the observed LE across different time 

scales using the wavelet transform technique, which agrees well with the model results 

(Figure 7). In this section, we examine the coherence between observed LE and WTD using 

the cross-wavelet transform technique (Appendix A). This analysis is intended to explore the 

subsurface-land surface connection at different temporal scales in a time localized fashion. 

Figure 8 shows the time localized cross-wavelet power of daily average measured LE and 

WTD time series at the Wuestebach test site. This figure shows cross-wavelet power at a 

monthly scale (about 32day) in summer (from June 2011 until August 2011). High cross-

wavelet power is also observed at about 64day time scale. Figure 8 reveals the time localized 
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coherence between observed LE and WTD at two dominating time scales on the order of 

months in summer. This result suggests that interconnections exist between subsurface 

hydrodynamics and land surface processes at different time scales under moisture limited 

conditions, which motivates the proposed DBF concept. In the following sections we 

corroborate the observed coherence patterns in Figure 8 with the model results. 

4.3. Analysis of simulated space-time variability  

According to the DBF concept, atmosphere and groundwater act as the upper and the lower 

boundary conditions, respectively, for the land surface processes. As a first step, we illustrate 

the influence of atmospheric variability on simulated land surface processes at different time 

scales. Figure 9 shows the time localized wavelet power of simulated Rnet and LE averaged 

over the catchment. The 1day scale variability in Rnet spectrum is observed throughout the 

year, although it is less pronounced in the colder months. Additionally, Rnet spectrum shows 

variability at the 32day time scale in summer. Similar to Rnet, the wavelet power spectrum of 

LE shows temporal variability at 1day scale, indicating the connection between Rnet and ET. 

At larger time scales, LE variability does not directly correlate with Rnet in summer, although 

temporal patterns at about 32-64day are observed in the LE spectrum. 

Figure 10 shows time localized wavelet power of catchment-averaged precipitation (P), 

simulated relative surface saturation (Sr), and simulated WTD. The P and Sr spectra show 

similar variability at time scales up to 8-16day throughout the year. The variability of P is 

reflected in Sr and WTD spectrum at about 16-32day time scale during February and 

September, which are the major recharge periods over the catchment. The exception is 

September 2010, when 16-32day variability is not visible in WTD spectrum. It should be 

mentioned that, 2010 is the driest of the three simulated years. This may be the reason for the 

discontinuity in the wavelet power spectrum of WTD, because simulated groundwater 

recharge dropped drastically during this time period over the catchment. Additionally, 
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variability in Sr spectrum at 32-64day time scale is observed in summer. These results agree 

with the findings of Lauzon et al. [2004], who demonstrated that the soil moisture data from 

the Orgeval watershed in France shows variability at time scales greater than 16day in 

summer from 1998 until 2001.  

According to the DBF concept, daily LE variability (Figure 9) influences groundwater 

dynamics under moisture limited conditions (Figure1, inset in WTD plot). Note that the 1day 

temporal pattern is visible in the WTD wavelet power spectrum in Figure 10, which is due to 

the daily groundwater contribution to meet ET demand under soil moisture limited conditions 

[e.g., Fahle and Dietrich, 2014]. Therefore, Figure 9 and 10 connect atmospheric forcing (i.e., 

Rnet) and subsurface hydrodynamics to land surface energy fluxes on a 1day time scale. 

Figure 11a shows the difference between simulated daily average LEpot and LE over the 

simulation period to demonstrate the influence of moisture on ET. Significant differences 

between LEpot and LE (LEpot - LE) are observed in summer, especially in 2010. As mentioned 

earlier, 2010 is the driest of the three simulated years, which is the reason for the high LEpot - 

LE observed in this year. According to the DBF concept, groundwater influences LE because 

of the dependence of ET on capillary rise of moisture from the free groundwater table (Figure 

1). Figure 11b shows the time localized cross-wavelet power spectrum of LEpot - LE and WTD 

to illustrate this connection. This figure shows cross-wavelet power during summer at 1day 

time scale, while the phase arrows indicate that the two time series generally show an anti-

phase relationship at this time scale. At the 32day time scale, consistent high cross-wavelet 

power is observed in summer. At this scale, the phase arrows show that the WTD time series 

slightly leads the LEpot - LE time series, which demonstrates the feedback of WTD variability 

on summer ET at this time scale. In 2010 and 2011, significant wavelet power at the time 

scales greater than 64day suggests that under dry conditions, coherence between LEpot - LE 

and WTD is extended to larger time periods. 
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The wavelet transform analysis above correlates the mass and energy balance components 

across different time scales using the catchment-averaged time series in the context of DFB 

concept. In order to demonstrate the coherence between the spatial patterns of these processes, 

we present log-log unit semivariograms (i.e., power spectra [e.g., Wen and Sinding-Larsen, 

1997; Gneiting et al., 2012]) of simulated LE, WTD, and Rnet in summer and winter over the 

Rur catchment in Figure 12. Note that these semivariograms are based on the average summer 

and winter time fluxes over the three simulated years (2009-2011).  

The unit semivariogram of Rnet does not exhibit a clear sill within the length scale of the 

catchment in summer or winter. This indicates that the spatial structure of Rnet either follows a 

power law behavior or a large-scale stationary process with a correlation scale larger than the 

catchment. While the unit semivariogram of WTD shows spatial correlation for scales less 

than 5km throughout the year, the LE semivariogram exhibits strong seasonal dependence. In 

summer, the unit semivariogram of LE shows similar spatial pattern to that of WTD, with 

correlation for scales less than 5km. During winter, on the contrary, the semivariogram of LE 

shows similar behavior to that of Rnet with monotonically increasing semivariance and without 

a distinct sill within the length scale of the catchment. 

The cross-semivariograms in Figure 13 demonstrate the spatial coherence between LE and 

WTD in summer and winter. Under soil moisture limited conditions (summer), the LE and 

WTD are negatively correlated for scales less than 5km, which agrees well with the univariate 

semivariograms for these variables (Figure 12). In winter, on the other hand, LE and WTD 

show weaker positive correlation and the cross-semivariogram does not exhibit a clear sill 

within the length scale of the catchment. 

According to the proposed DBF concept, the groundwater influence on ET is observed under 

soil moisture limited conditions. The variogram analysis illustrates groundwater and 

atmospheric forcing control on the spatial pattern of LE in summer and winter, respectively. 
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The negative correlation between LE and WTD in Figure 13 demonstrates the interconnection 

between the spatial patterns of groundwater and ET under dry conditions. This negative 

correlation exists due to higher ET at locations with shallower groundwater table depth and 

vice-versa, which suggests the groundwater control on the spatial pattern of summer ET. In 

winter, LE semivariogram shows similar behavior to that of Rnet (Figure 12) because of the 

prevailing energy limited conditions over the catchment during the colder months of the year.  

5. Summary and conclusions 

In this study, the concept of the dual-boundary forcing (DBF) is proposed to describe and 

quantify the feedback mechanisms between different compartments of the hydrological cycle 

in space and time. According to the proposed DBF concept, the atmosphere and groundwater 

act as the upper and lower boundary conditions, respectively, for land surface processes. 

These boundary conditions influence the land surface at different space-time scales. The 

availability of energy and moisture determines the dominating boundary condition for the 

exchange processes. 

The coupled subsurface-land surface model ParFlow.CLM was applied on the Rur catchment, 

Germany, and the space-time patterns of the mass and energy fluxes were analyzed using 

wavelet transform and variogram techniques to verify this concept. Prior to this analysis, a 

comparison between the model results and observations was performed, which shows 

reasonable agreement for different mass and energy fluxes even without comprehensive 

model calibration. While uncertainties in the simulation results may arise from model 

structure, parameters, and atmospheric forcing data, ParFlow.CLM is forced by re-analysis 

datasets from COSMO-DE and ensures closure of the mass and energy balances resulting in 

an internally consistent description of the relevant process, system dynamics and feedbacks.  
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The results suggest that at the daily time scale, ET variability is driven by the radiative 

atmospheric forcing (Rnet). This variability of ET influences the subsurface hydrodynamics 

and creates the diurnal WTD fluctuation through daily water uptake under moisture limited 

conditions, which is analogous to periodic pumping of groundwater. Groundwater storage, on 

the other hand, depletes due to this withdrawal and influences ET mainly at the monthly time 

scale under moisture limited conditions in summer. It was also demonstrated that this 

influence extends to multi-month time scales in dry periods.  

It should be mentioned that the groundwater control on ET may be significant at even longer 

time scales due to the long term memory effect of subsurface hydrodynamics under e.g., 

prolonged drought conditions. This influence was not considered here due to data limitation, 

because the simulation was performed and compared to measured data over three years (2009-

2011). However, this effect can also be interrogated utilizing the proposed techniques with 

extended time series of fluxes and states, which is planned in future. 

The variogram analysis demonstrates the seasonal dependence of spatial variability of ET. 

Under energy limited conditions, the spatial pattern of ET is determined by Rnet. Strong 

influence of groundwater on the spatial variability of ET is observed under moisture limited 

conditions. These findings suggest that, water table observations are useful in predicting the 

spatial pattern of ET in summer. In winter, however, the spatial pattern of ET may be 

predicted from Rnet measurements alone (e.g., from remote sensing observations). 

It has been discussed earlier that the simulation results may be affected by the coupled model 

structure, grid resolution, parameterization, and interpolation of atmospheric forcing data. 

There is a need of a comprehensive sensitivity and uncertainty analysis study to assess the 

impact of the aforementioned issues on DBF concept, which would require novel, non-

traditional approaches and large computer resources. This is beyond the scope of the current 

study and should be the subject of future research. 
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Appendix A 

A.1 Variogram analysis 

In this study, the spatial variability of different fluxes in the coupled water and energy cycles 

are analyzed using semivariograms. According to Goovaerts [1997], the experimental 

semivariogram for a spatially distributed attribute z is calculated as  

( )
2

1

1( ) [ ( ) ( )]
2 ( )

N h

h z u z u h
N h α

γ α α
=

= − +  

where h is the lag distance, N is the number of pairs, and u is measurement location. The 

cross-semivariogram between za and zb is calculated as 
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In this study, we calculate omni-directional variograms, which assumes that the data is 

isotropic.  

A.2 Continuous wavelet transform analysis 

The wavelet transform is a useful tool in analyzing time series variability and has been used 

previously to analyze various geophysical data [e.g., Andreo et al., 2006; Liu et al., 2011; 

Perez-Valdivia et al., 2012]. We use continuous wavelet transform analysis to show the time 

localized temporal variance of different processes as a function of frequency. If xn is a 

timeseries (n = 0 … N-1) with an equal time spacing of tδ , according to Torrence and Compo 

[1997], the continuous wavelet transform of xn can be defined as its convolution with a scaled 

and translated version of a wavelet function 0 ( )ψ η  

1

0
0

( )( ) *
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n n
n

n n tW s x
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′

′=

′ − =   
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where s is the wavelet scale and (*) denotes the complex conjugate. The wavelet function 

depends on the non-dimensional time parameter η. In this study, we use the Morlet wavelet as 

the wavelet function, which can be expressed as 

2
01/4 /2

0 ( ) ie eω η ηψ η π − −=  

where 0ω is the non-dimensional frequency. The global wavelet power is obtained by 

averaging the wavelet powers over the localized time instances and can be defined as 

12 2
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W s W s
N

−

=

=   

The cross-wavelet spectrum of two time series x and y can be defined as 
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( ) *( )xy x y
n n nW W s W s=  

where ( )x
nW s and ( )y

nW s denote the wavelet transform of x and y, respectively. According to 

Torrence and Compo [1997], high cross-wavelet power indicates covariance between the time 

series. Grinsted et al. [2004] argued that a phase locked phenomenon with high cross-wavelet 

power implies a cause and effect relationship between two time series.  
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Table 2. Soil hydraulic parameters of shallow subsurface. 

Table 3. Location, temporal extent, measurement frequency, and source of the field 

measurements.  



38 
 

List of Figures 

Figure 1. Schematic of the proposed dual boundary forcing (DBF) concept. Hypothetical time 

series of atmospheric (Rnet), land surface (LE), and subsurface (WTD) processes are 

partitioned based on the energy and moisture availability. The shaded area in each plot 

indicates the energy limited period. The inset in WTD time series shows the high frequency 

variability of subsurface hydrodynamics under moisture limited conditions. 

Figure 2. Location and topography (a), vegetation cover (b), and soil texture (c) information 

of the Rur catchment. The blue lines and the legends on the topography show the river 

network and the locations of the measurement stations, respectively. 

Figure 3. Precipitation (top) and observed and simulated hydrographs (bottom) at the 

Monschau discharge gauging station. The corrected discharge is calculated by adding 

measured differential releases (outflow-inflow) from the Perlenbach reservoir to the simulated 

data. 

Figure 4. Observed and simulated soil moisture at Wuestebach (a), Rollesbroich (b), and 

Schoenenseiffen (c) test sites. 

Figure 5. Observed and simulated groundwater table depth, WTD time series at 12 selected 

groundwater wells (a), and cumulative frequency distributions of the observed and simulated 

WTD (b). 

Figure 6. Observed and simulated average daily cycles of latent heat flux, LE, and sensible 

heat flux, H at the Merken test site. The solid black lines show the mean values of simulated 

data. The red lines and shaded areas show the mean and standard deviation of observed flux, 

respectively.  
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Figure 7. Wavelet transform of observed and simulated latent heat flux, LE, at the 

Merzenhausen test site. The time localized power is shown in the left panels. The cone of 

influence is indicated with the thick black lines in these plots. The right panels show the 

global wavelet power. 

Figure 8. Time localized cross-wavelet power of daily average observed latent heat flux, LE, 

and groundwater table depth, WTD time series at the Wuestebach test site. 

Figure 9. Time localized wavelet power of net radiation, Rnet, and latent heat flux, LE. 

Figure 10. Time localized wavelet power of Precipitation, P, relative surface saturation, Sr, 

and groundwater table depth, WTD. The enlarged part of WTD spectrum (from January 2010 

until December 2011) shows the power with small amplitude at 1-4.5day time scale.  

Figure 11. Difference between daily average simulated potential and actual latent heat flux, 

LEpot - LE (a), and time localized cross-wavelet power of LEpot - LE and water table depth, 

WTD, over the simulation period. The arrows show the phase relationship between the two 

time series (right arrow: in phase; left arrow: anti-phase; up arrow: LEpot - LE is leading by 

90°; and down arrow: WTD is leading by 90°). 

Figure 12. Unit semivariograms of latent heat flux, LE, groundwater table depth, WTD, and 

net radiation, Rnet in summer and winter. Note the log-log scale.  

Figure 13. Cross-semivariograms of latent heat flux, LE, and groundwater table depth, WTD 

in summer and winter. Note the dual y-axis.  
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Tables 

Table 1. Soil hydraulic parameters of the homogeneous deep subsurface. 

Parameter name Parameter value Unit 
Saturated hydraulic conductivity, ksat   6.4×10-6 ms-1 

Porosity, ɸ  0.44 - 
van Genuchten parameter, α  2.1 m-1 
van Genuchten parameter, n 3.0 - 

Residual saturation, Sres  0.1 - 
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Table 2. Soil hydraulic parameters of shallow subsurface. 

Texture Ksat [ms-1] ɸ α[m-1] n Sres
Silty clay 8.3×10-7 0.389 2.7 2.0 0.2 
Silt loam 3.9×10-6 0.441 2.1 3.0 0.1 
Clay loam 1.1×10-6 0.354 2.1 2.0 0.15
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Table 3. Location, temporal extent, measurement frequency, and source of the field 

measurements. 

Data Location Temporal extent Frequency Source 
Discharge Monschau 01.01.2009 - 31.12.2009 Daily LANUV 

Soil moisture Wuestebach 01.07.2009 - 31.12.2009 15 min TERENO 
Soil moisture Rollesbroich 05.05.2011 - 31.12.2011 15 min TERENO 
Soil moisture Schoenenseiffen 01.01.2010 - 31.12.2011 10 min TERENO 

Water table depth -* 01.01.2009 - 31.12.2009 Weekly - Monthly LANUV 
Water table depth Wuestebach 01.01.2011 - 31.12 2011 Daily TERENO 
Latent heat flux Merken 01.04.2009 - 31.08.2009 30 min TR32 database
Latent heat flux Wuestebach 18.02.2011 - 31.12.2011 30 min Uni. Trier 
Latent heat flux Merzenhausen 01.07.2011 - 31.12.2011 30 min TERENO 

Sensible heat flux Merken 01.04.2009 - 31.08.2009 30 min TR32 database 
Net radiation Selhausen 01.01.2009 - 31.12.2009 60 min TERENO 

Ground heat flux Selhausen 01.01.2009 - 31.12.2009 60 min TERENO 
* The locations are shown in Figure 2a 
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Figure 3. Precipitation (top) and observed and simulated hydrographs (bottom) at the 

Monschau discharge gauging station. The corrected discharge is calculated by adding 

measured differential releases (outflow-inflow) from the Perlenbach reservoir to the simulated 

data. 
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Figure 4. Observed and simulated soil moisture at Wuestebach (a), Rollesbroich (b), and 

Schoenenseiffen (c) test sites. 
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Figure 5. Observed and simulated groundwater table depth, WTD time series at 12 selected 

groundwater wells (a), and cumulative frequency distributions of the observed and simulated 

WTD (b). 

  



 

Figure 6. 

heat flux,

data. The

respectiv

 

 

 

 

 

Observed a

, H at the Me

e red lines an

ely. 

nd simulated

erken test sit

nd shaded ar

d average da

te. The solid

eas show the

48

aily cycles of

d black lines 

e mean and s

f latent heat 

show the m

standard dev

flux, LE, an

mean values o

viation of ob

nd sensible 

of simulated 

bserved flux,

 

 



49 
 

 

 

Figure 7. Wavelet transform of observed and simulated latent heat flux, LE, at the 

Merzenhausen test site. The time localized power is shown in the left panels. The cone of 

influence is indicated with the thick black lines in these plots. The right panels show the 

global wavelet power. 
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Figure 9. Time localized wavelet power of net radiation, Rnet, and latent heat flux, LE. 
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Figure 10. Time localized wavelet power of Precipitation, P, relative surface saturation, Sr, 

and groundwater table depth WTD. The enlarged part of WTD spectrum (from January 2010 

until December 2011) shows the power with small amplitude at 1-4.5day time scale.  
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Figure 11. Difference between daily average simulated potential and actual latent heat flux, 

LEpot - LE (a), and time localized cross-wavelet power of LEpot - LE and water table depth, 

WTD, over the simulation period. The arrows show the phase relationship between the two 

time series (right arrow: in phase; left arrow: anti-phase; up arrow: LEpot - LE is leading by 

90°; and down arrow: WTD is leading by 90°). 
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Figure 12. Unit semivariograms of latent heat flux, LE, groundwater table depth, WTD, and 

net radiation, Rnet in summer and winter. Note the log-log scale.  
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Figure 13. Cross-semivariograms of latent heat flux, LE, and groundwater table depth, WTD 

in summer and winter. Note the dual y-axis. 
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