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Abstract Terrestrial hydrological processes interact in a complex, nonlinear fashion. It is important to
quantify these interactions to understand the overall mechanisms of the coupled water and energy cycles.
In this study, the concept of a dual-boundary forcing is proposed that connects the variability of atmos-
pheric (upper boundary) and subsurface (lower boundary) processes to the land surface mass and energy
balance components. According to this concept, the space-time patterns of land surface mass and energy
fluxes can be explained by the variability of the dominating boundary condition for the exchange processes,
which is determined by moisture and energy availability. A coupled subsurface-land surface model is
applied on the Rur catchment, Germany, to substantiate the proposed concept. Spectral and geostatistical
analysis on the observations and model results show the coherence of different processes at various space-
time scales in the hydrological cycle. The spectral analysis shows that atmospheric radiative forcing gener-
ally drives the variability of the land surface energy fluxes at the daily time scale, while influence of subsur-
face hydrodynamics is significant at monthly to multimonth time scales under moisture-limited conditions.
The geostatistical analysis demonstrates that atmospheric forcing and groundwater control the spatial vari-
ability of land surface processes under energy and moisture-limited conditions, respectively. These results
suggest that under moisture-limited conditions, groundwater influences the variability of the land surface
mass and energy fluxes. Under energy-limited conditions, on the contrary, variability of land surface proc-
esses can be explained by atmospheric forcing alone.

1. Introduction

Atmospheric and subsurface processes show variability at different space-time scales [e.g., Kumar and Geor-
giou, 1993; Haddad et al., 2004; Gundogdu and Guney, 2007; Taany et al., 2009; Beecham and Chowdhury,
2010]. The land surface connects these two compartments (i.e., atmosphere and subsurface) of the hydro-
logical cycle. Because of the direct interactions, land surface processes (e.g., evapotranspiration, ET, and sen-
sible heat transfer) are influenced by the variability of atmosphere and subsurface hydrodynamics.

The connection between subsurface hydrodynamics and land surface mass and energy fluxes has been a
subject of research for some time [e.g., Tian et al., 2012; Niu et al., 2013]. Sklash and Farvolden [1979] dis-
cussed the important role of groundwater on surface runoff generation using observations and simulation
results. Liang et al. [2003] showed the impact of the surface water-groundwater interactions on land surface
processes. Maxwell and Miller [2005] demonstrated the effect of including detailed subsurface hydrodynam-
ics in a land surface parameterization scheme for simulating the coupled water and energy cycles. Kollet
and Maxwell [2008] studied the influence of groundwater dynamics on land surface energy fluxes and pro-
posed a critical water table depth (WTD) zone where the effect is significant along hillslopes. Similar rela-
tionship between ET and WTD was found by Szilagyi et al. [2013], who used observations from Platte river
valley, USA. Observations [Yeh and Eltahir, 2005] and model results [e.g., Miguez-Macho and Fan, 2012a] also
reveal the role of groundwater as a modulator of surface runoff. The groundwater control on ET through
shallow soil moisture has been investigated explicitly in several studies [e.g., Chen and Hu, 2004; Soylu et al.,
2011]. Lam et al. [2011] studied the spatial and temporal connection between groundwater dynamics and
ET and showed the importance of groundwater contribution toward dry season evaporation. The study by
Miguez-Macho and Fan [2012b] demonstrated the influence of groundwater on ET at a seasonal scale and
discussed different mechanisms responsible for this phenomenon. Several studies have demonstrated the
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scaling properties of groundwater dynamics and showed the connection with surface water system [e.g.,
Little and Bloomfield, 2010; Schilling and Zhang, 2012] and energy fluxes [e.g., Amenu and Kumar, 2005].

The interaction between land surface processes and atmospheric variables has also been studied previously
[e.g., Brubaker and Entekhabi, 1996; Betts et al., 1996; Porporato et al., 2000]. Several studies demonstrated
the effect of land surface soil moisture [e.g.,, Manabe and Delworth, 1990; Rowell and Blondin, 1990; Findell
and Eltahir, 1997; Seuffert et al., 2002; Gedney and Cox, 2003; Zhang et al., 2008] and groundwater dynamics
[e.g., Maxwell et al., 2007; Yuan et al., 2008] on atmospheric processes. The important role of groundwater
dynamics on land-atmosphere moisture feedback was discussed by York et al. [2002]. Anyah et al. [2008]
showed the effect of subsurface hydrodynamics on coupled land-atmosphere variability and argued that a
shallow groundwater table tends to enhance ET in arid regions, which eventually leads to increased precipi-
tation. Ferguson and Wood [2011] used global satellite remote sensing data to identify the regions where
land-atmosphere coupling persists. Phillips and Klein [2014] used the observations from Southern Great
Plains, USA, and showed the influence of atmospheric forcing on land surface processes at daily time scale.

The aforementioned studies suggest that interconnections exist between different compartments of the
terrestrial hydrological cycle (i.e., subsurface, land surface, and atmosphere). However, quantifying these
interconnections between the compartmental mass and energy fluxes is complicated. This is mainly due to
the diverse space-time scales associated with the processes that comprise this system, which has been dis-
cussed previously in relation to the variability in atmospheric [e.g., Matsoukas et al., 2000; Hsu and Li, 2010],
land surface [e.g., Smith et al., 1998; Labat et al., 2005; Ding et al., 2013], and subsurface [e.g., Liang and
Zhang, 2013] processes, as well as land-atmosphere interactions [e.g., Delworth and Manabe, 1988; Wu and
Dickinson, 2004].

In this context, we propose the concept of a dual-boundary forcing (DBF) to represent and quantify the inter-
actions between the compartmental mass and energy balance components at the relevant space and time
scales. Arguably, it is not feasible to fully characterize these interactions with observations. Continuous meas-
urements of all the fluxes and states from each compartment of the hydrological cycle covering the entire
catchment for extended time periods would be required for this purpose, which are generally not available
[e.g., Seneviratne and Stockli, 2008; Fernandez-Prieto et al., 2013]. Therefore, to support the proposed concept,
we apply the coupled subsurface-land surface model ParFlow.CLM [Maxwell and Miller, 2005; Kollet and Max-
well, 2008] to a regional scale catchment (on the order of 10°%km?) in Germany to simulate the spatially dis-
tributed mass and energy fluxes in the hydrological cycle over three consecutive years (2009-2011). The
coupled model consists of the groundwater/surface water flow model ParFlow [Ashby and Falgout, 1996;
Jones and Woodward, 2001; Kollet and Maxwell, 2006] and the Common Land Model (CLM) [Dai et al., 2003].
In the first step, we demonstrate the model’s capability to represent the magnitude and dynamics of differ-
ent processes in the hydrological cycle by comparing the model results with spatially distributed measure-
ments. In ensuing steps, we analyze measured and simulated mass and energy fluxes using spectral and
geostatistical analysis techniques. The results illustrate scale-dependent coherence between groundwater
dynamics and land surface processes, which substantiate the proposed DBF concept.

2. Conceptual Approach

The underlying hypothesis of this study is that the land surface processes are influenced by a DBF at differ-
ent space-time scales. According to this hypothesis, the atmosphere and groundwater act as the upper and
the lower boundaries, respectively. The availability of energy and moisture determines which boundary con-
dition dominates the exchange processes. The land surface reacts and interacts at the interface between
the free atmosphere and subsurface to adapt or transform the variability of the processes associated with
those boundaries. Therefore, the space-time patterns in land surface processes can be in large parts
explained by the variability of the dominant boundary condition at the respective space and time scales,
when accounting for major nonlinear feedbacks.

Figure 1 shows a schematic of the proposed DBF concept. Hypothetical time series of atmospheric and land
surface (net radiation, Ry, latent heat flux, LE; and potential latent heat flux, LE,), and subsurface (ground-
water table depth, WTD) fluxes and states are shown in this figure. Coherence between atmospheric and land
surface processes is observed under both energy-limited and moisture-limited conditions. Under energy-
limited conditions, LE agrees well with LE,,; because moisture is abundant. Under moisture-limited conditions,
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daily ET demand. Because of this
dependence, the high-frequency
(daily) variability of land surface
energy fluxes is propagated into
the subsurface, generating the var-
iability in subsurface hydrodynam-
ics at the respective time scale
[e.g., Gribovszki et al., 2010; Fahle
and Dietrich, 2014]. The subsurface
hydrodynamics, in contrast, influ-
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Figure 1. Schematic of the proposed dual-boundary forcing (DBF) concept. Hypothetical land surface energy fluxes has
time series of atmospheric (R, land surface (LE), and subsurface (WTD) processes are been discussed by Amenu and
partitioned based on the energy and moisture availability. The shaded area in each plot Kumar [2005], who also Suggested

indicates the energy limited period. The inset in WTD time series shows the high-
frequency variability of subsurface hydrodynamics under moisture-limited conditions.
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that this influence may be signifi-
cant under dry conditions.

The proposed concept may be corroborated via the analysis of in situ observations and physics-based
simulations of moisture and energy states and fluxes. It should be mentioned that the DBF concept may
be simplified compared to the actual nonlinear feedbacks between the mass and energy balance com-
ponents in the hydrological cycle. In this study, we applied a physics-based distributed model, which
incorporates mathematical formulations to represent complex processes of the coupled terrestrial hydro-
logical and energy cycles to the best of our current knowledge. There is uncertainty with respect to
model parameterization and structure, input parameters, and space/time discretization of the governing
partial differential equations [e.g., Vrugt et al.,, 2005]. Accounting for all sources of uncertainty is not feasi-
ble in the current modeling framework, because of the limitations of computational resources. However,
the capability of the model to reproduce the major states and fluxes is tested by comparing the results
with measured data from the experimental catchment. Additionally, there may be significant feedbacks
from the land surface processes and subsurface hydrodynamics to the free atmosphere, which may also
affect the connections between the mass and energy balance components at different space-time scales.
We do not consider these here, because the model is forced with the atmospheric variables in off-line
mode.

3. Methods

3.1. The Study Area: Rur Catchment

The study area is the Rur catchment (Figure 2a), which is located in western Germany with an area of about
2400km?. The Rur River has a length of some 165 km with headwaters located in Belgium and discharge into
the Meuse River near Maastricht. The northern part of the catchment is characterized by flat lowland regions,
which is a part of the Belgium-Germany loess belt formed by unconsolidated rock deposits. Agriculture is the
major land use type in this part of the catchment. This flat region receives an annual precipitation of approxi-
mately 600-800 mm and contributes to a potential ET of approximately 550-600 mm/a [Bogena et al., 2005].

The southern part of the catchment is characterized by the mountainous Eifel region, where Palaeozoic and
Mesozoic rock outcrops. Compared to the northern lowlands, this mountainous region is characterized by a
higher precipitation amount of more than 1200 mm/a and a lower potential ET amount of approximately
550 mm/a [Bogena et al., 2005]. The Eifel is heavily forested with coniferous trees. A distinct difference in
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Figure 2. Location and topography (a), vegetation cover (b), and soil texture (c) information of the Rur catchment. The blue lines and the
legends on the topography show the river network and the locations of the measurement stations, respectively.

the mean annual temperature between the northern (8.5-10.5°C) and the southern (7.0-9.0°C) part of the
catchment is observed due to a 600 m difference in elevation.

3.2. The Coupled Model: ParFlow.CLM
ParFlow is an integrated, parallel, variably saturated groundwater flow model that solves the Richards’ equa-
tion [Richards, 1931] in three spatial dimensions:

o 00() _
q=—k(x)kr(Y)V(y—2) (2)

where S; is specific storage (m™"), 0 is soil moisture (-),  is pressure head (m), t is time (s), ¢ is porosity (-), q
is water flux (ms™"), S is general source/sink term (s '), k(x) is saturated hydraulic conductivity (ms™"), kr is
relative permeability (-), and z is depth below surface (m). ParFlow uses a cell-centered finite-difference/
finite control volume scheme in space and an implicit backward Euler scheme in time to solve this equation.
The surface flow is integrated by applying a free surface overland flow boundary condition at the land sur-
face [Kollet and Maxwell, 2006]. The kinematic wave equation is solved maintaining the continuity of pres-
sure and flux at the boundary. A terrain following vertical grid can be used in ParFlow honoring the
topographic slopes in an approximate fashion [Maxwell, 2013].

The land surface model CLM is coupled with ParFlow to simulate land surface mass and energy balance
components [Maxwell and Miller, 2005; Kollet and Maxwell, 2008]. Vertical mass, energy, and momentum
fluxes are described by the Monin-Obukhov similarity principle in CLM. The energy balance equation in
CLM can be written as:

Rt (0)=LE(0)+H(0)+G(0) (3)
where R, is net radiation (Wm™2), LE is latent heat flux (Wm™2), H is sensible heat flux (Wm~2), and G is

ground heat flux (Wm~2). This equation is written as a function of § to demonstrate the connection
between land surface energy balance and subsurface hydrodynamics. The source/sink term S in equation
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(1) corresponds to the moisture-dependent LE in equa-
tion (3). The surface heat transfer in CLM is simulated
by solving the heat diffusion equation. G is applied as

Table 1. Soil Hydraulic Parameters of the Homogeneous
Deep Subsurface

Parameter
Parameter Name Value Unit  the top boundary condition to solve this equation at
Saturated hydraulic 64X 10 ms—'  the land surface and obtained as the residual of equa-
conductivity, Ksat tion (3), which closes the energy balance. It should be

Porosity, 0.44 - . . .

orosity, ¢ - mentioned that, CLM considers only conduction pro-
van Genuchten parameter, o 2.1 m o R X .
van Genuchten parameter, n 3.0 - cess in simulating subsurface energy transport ignoring
Residual saturation, Syes 0.1 - convection, which eventually decouples the heat trans-

port from the moisture transport in the coupled model
[Kollet et al., 2009]. The land surface model CLM is forced with atmospheric variables including precipitation
rate, radiation, temperature, barometric pressure, wind speed, and humidity. The off-line coupling scheme
considered in this study assumes that these atmospheric variables do not change due to transient land sur-
face conditions [Kollet, 2009]. This assumption may influence the mass and energy fluxes simulated by the
model because of the nonlinear feedback mechanisms between different compartments mentioned before.
Dai et al. [2001] describes the parameterizations in CLM in details.

In the coupled modeling framework, ParFlow replaces the simplified hydrological scheme in CLM and simu-
lates subsurface hydrodynamics along with surface runoff. In return, CLM calculates the nonlinear source/
sink terms of soil moisture (e.g., infiltration from precipitation and ET, respectively) for ParFlow. At every 1 h
time step, the two coupled model components exchange fluxes and shallow soil moisture distributions in
an operator splitting approach.

3.3. Rur Model Setup

The ParFlow.CLM model is applied over a model domain encompassing the Rur catchment. A total subsur-
face depth of 50 m is considered in the model, with a variable vertical discretization ranging from 4 X 102
m at the land surface to 2 X 10° m at the bottom of the model domain using the aforementioned terrain
following grid implementation. Laterally, the model has a uniform grid resolution (Ax=Ay) of 1 km with 168
X 168 cells in x and y dimensions, respectively. No-flow lateral and bottom boundary conditions are applied
to the model domain. At the land surface, a free surface overland flow boundary condition is used [Kollet
and Maxwell, 2006].

We obtain spatially distributed vegetation cover information (Figure 2b) for the model domain from the
Global Land Cover 2000 (1 km spatial resolution) digital database (GLC2000, European Commission, Joint
Research Centre, 2003), with plant parameters derived following the International Geosphere-Biosphere
Program (IGBP) standard. The deeper subsurface in the model is homogeneous with parameter values
(Table 1) obtained from Gleeson et al. [2011]. Digital Soil Map of the World (DSMW) provided by the Food
and Agricultural Organization of UNO (FAO) and the Euro-soil database information [e.g., Dolfing and Schel-
tens, 1999] are used to represent the texture of different soil types in the shallow subsurface (Figure 2c). The
van Genuchten function represents the saturation pressure head relationship for different soil types in the
model [van Genuchten, 1980], with parameter values (Table 2) obtained from Schaap and Leij [1998].

The simulation period extends from January 2009 until December 2011 with a time resolution of 1 h. Atmos-
pheric variables are obtained from the COSMO-DE re-analysis data set of the German Weather Service (DWD).
We apply linear interpolation to downscale these atmospheric variables to the model grid resolution of 1 km,
because COSMO-DE operates at a lateral grid resolution of 2.8 km. A model spin-up is performed to achieve a
realistic initial condition. For this purpose, the model is initialized with an arbitrary uniform water table depth
of 5 m below ground surface. With this setup, repeated model runs are performed using the hourly atmos-
pheric forcing data of 2009 to reach a dynamic equilibrium, which required about 20 years of simulation time.

3.4. Field Measurements

The Rur catchment is the central research area for the Transregional Collaborative Research Centre, TR32
[Vereecken et al., 2010]. It is also the central monitoring site of the Eifel/Lower Rhine valley observatory of
the Terrestrial Environmental Observatories, TERENO [Bogena et al., 2006], which is coordinated at the
Research Centre Juelich (Forschungszentrum Juelich). This catchment has well-established measurement
facilities for monitoring the mass and energy balance components from the subsurface into the
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atmosphere. The observations used in this study

Table 2. Soil Hydraulic Parameters of Shallow Subsurface . ) )
4 are summarized in Table 3. The geographic loca-

Texture Kear (ms™") ¢ a(m™) n S ) . oo
tions of the measurement sites are shown in Fig-

Silty clay 83%x 1077 0389 27 20 02

Sitloam 39X 10°° 0441 21 30 0 S

Clay loam 11X 10°° 0.354 2.1 20 0.15

River discharge measurements are obtained
from the Nature, Environment, and Consumer
Protection Agency (LANUV) of North Rhine-Westphalia, Germany, which collects discharge information at
several gauging stations along the Rur River. There are large reservoir systems in the mountainous southern
part of the catchment, which influence the downstream flow considerably. Therefore, we chose the Mon-
schau, a gauging station at the upstream reaches of the river for comparison with the simulated discharge,
which is arguably less influenced by the management practices.

A state-of-the-art wireless sensor network was installed at the forested subcatchment Wuestebach in 2009
to gather continuous, spatially distributed soil moisture information at three different soil depths (5, 20, and
50 cm) [e.g., Bogena et al., 2010; Rosenbaum et al., 2012]. Similar sensor network was also installed at the
Rollesbroich test site in 2011. We used the average soil moisture information from these sensor networks in
this study. We also used the soil moisture measurements from Schoenenseiffen site, which is maintained by
Research Centre Juelich. The Erftverband, a nonprofit water management organization in the region pro-
vided WTD information at 43 observation wells located in the northern part of the catchment (Figure 2a).

Three energy balance towers were installed in 2009 at the Merken test site in different agricultural fields,
namely, winter wheat, sugar beet, and barley. These towers were equipped with eddy covariance measure-
ment instruments. LE and H data at this site were collected during TR32 FLUXPAT campaign in summer
2009 [e.g., Graf et al., 2010; Kessomkiat et al., 2013; van de Boer et al., 2013].These fluxes were also measured
at the forested Wuestebach site in 2011. Additionally, the climate station in Merzenhausen, which is main-
tained by the Research Centre Juelich, has been collecting LE data since 2011. Ry, and G measurements
were obtained from a micrometeorological tower in Selhausen. R,,.; was measured at 2.5 m above ground,
while G measurements were performed at 8 cm soil depth at this site.

4, Results and Discussion

4.1. Comparison to Field Measurements

Figure 3 shows a comparison between observed and simulated hydrographs from January 2009 through
December 2011 at the Monschau discharge gauging station. The model is generally able to capture the tim-
ing of the peaks throughout the simulation period. During low flow conditions, the simulation results show
good agreement with the observations. However, the peak discharge values are underestimated in Decem-
ber 2010 and January 2011. The overall model performance is depicted by a Nash-Sutcliffe value [Nash and
Sutcliffe, 1970] of NSE =0.40. As mentioned earlier, the flows on the Rur River are managed with reservoir
systems that are not considered by ParFlow.CLM. In order to estimate the influence of such management
practices on the simulation, Figure 3 also shows the comparison between the observed and modeled
hydrographs after correcting the simulated discharge by adding measured differential releases (outflow-

Table 3. Location, Temporal Extent, Measurement Frequency, and Source of the Field Measurements

Data Location Temporal Extent Frequency Source
Discharge Monschau 1 Jan 2009-31 Dec 2009 Daily LANUV

Soil moisture Wuestebach 1 Jul 2009-31 Dec 2009 15 min TERENO

Soil moisture Rollesbroich 5 May 2011-31 Dec 2011 15 min TERENO

Soil moisture Schoenenseiffen 1 Jan 2010-31 Dec 2011 10 min TERENO
Water table depth =2 1 Jan 2009-31 Dec 2009 Weekly-monthly LANUV

Water table depth Wuestebach 1Jan 2011-31 Dec 2011 Daily TERENO
Latent heat flux Merken 1 Apr 2009-31 Aug 2009 30 min TR32 database
Latent heat flux Wuestebach 18 Feb 2011-31 Dec 2011 30 min Uni. Trier
Latent heat flux Merzenhausen 1 Jul 2011-31 Dec 2011 30 min TERENO
Sensible heat flux Merken 1 Apr 2009-31 Aug 2009 30 min TR32 database
Net radiation Selhausen 1 Jan 2009-31 Dec 2009 60 min TERENO
Ground heat flux Selhausen 1 Jan 2009-31 Dec 2009 60 min TERENO

*The locations are shown in Figure 2a.
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Figure 3. Precipitation (top) and observed and simulated hydrographs (bottom) at the Monschau discharge gauging station. The corrected
discharge is calculated by adding measured differential releases (outflow-inflow) from the Perlenbach reservoir to the simulated data.

inflow) from Perlenbach reservoir, which is located at the upstream reaches of the Monschau gauging sta-
tion. This correction improves the agreement between the observed and simulated hydrographs, which is
reflected by a considerably improved NSE of 0.65. Therefore, it is likely that discrepancies between the
observed and simulated hydrographs result from the management practices.

Figure 4 compares the observed and simulated soil moisture at three different test sites over the Rur catch-
ment. Simulated values for the comparison are derived by averaging the soil moisture over the top two ver-
tical model layers. Figure 4a shows the comparison at the Wuestebach test site, demonstrating reasonable
agreement between the model results and observations without model calibration. Good agreement
between observed and simulated soil moisture in terms of magnitude and dynamics is observed from July
to October in Figure 4a. After this period, the model becomes saturated because the porosity value used in
the simulation at this location is too low [Rosenbaum et al., 2012]. Figures 4b and 4c compares observed
and simulated soil moisture at Rollesbroich and Schoenenseiffen test sites, respectively. The dynamics in
observed soil moisture due to wetting and drying is again reproduced well by the simulation. However, in
both locations, the model generally underestimates soil moisture. Reasons of these discrepancies may
include the uncertainty in model parameters and interpolation of the atmospheric forcing data.

Figure 5a shows a comparison between the observed and simulated WTD time series from January 2009 until
December 2011 at 12 selected wells. The seasonal dynamics of the observed WTD are reproduced reasonably
well by the simulation, though the model generally predicts shallower WTD compared to the observations.
This is also observed in Figure 5b, which shows the cumulative frequency distributions of the observed and
simulated mean WTD for all 43 wells. One possible reason for this underestimation may be the coarse lateral
grid resolution of 1 km, which has been discussed previously [e.g., Zhang and Montgomery, 1994; Kuo et al.,
1999; Sulis et al., 2011]. As shown in Figure 2a, the 43 groundwater wells are located in the northern flat part
of the catchment. Groundwater pumping in this area may lower the groundwater table [Bogena et al., 2005],
which may also create discrepancies between observed and simulated WTD. We did not attempt to correct
the simulated WTD for pumping because reliable information on groundwater extraction is not available.

Figure 6 shows a comparison between the average daily cycles of observed and simulated LE and H in dif-
ferent months of 2009 at the Merken test site. The model performance is reasonable in reproducing the
daily cycles of LE. The dynamics in LE are captured well throughout the measurement period with a small
overestimation in midday during July. The daily cycle of simulated H also shows reasonable agreement with
the measured data in April. However, for the rest of the measurement period, a systematic over prediction
of day time H is observed. Similar results were obtained in the study by Baker et al. [2003], where the Simple
Biosphere Model (SiB2.5) overestimated H compared to eddy covariance measurements.
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Figure 4. Observed and simulated soil moisture at Wuestebach (a), Rollesbroich (b), and Schoenenseiffen (c) test sites.
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Figure 6. Observed and simulated average daily cycles of latent heat flux, LE, and sensible heat flux, H at the Merken test site. The solid
black lines show the mean values of simulated data. The red lines and shaded areas show the mean and standard deviation of observed
flux, respectively.

We apply wavelet transform to study the temporal dynamics of the observed and simulated LE, because
interpreting the temporal variability of complex processes from direct inspection of the time series alone is
not feasible. A brief description along with the mathematical formulation of the wavelet transform tech-
nique is given in Appendix A. Figure 7 shows the time-localized wavelet power and the global wavelet spec-
tra of observed and simulated LE at the Merzenhausen test site from July 2011 through December 2011.
The observed LE time series shows variability at 1 day time scale due to the diurnal variation of incoming
solar radiation. Additionally, monthly (about 32 day time scale) variability is also observed in the measured
time series. Figure 7 illustrates that the simulated time series also show variability at these two prominent
time scales, which clearly demonstrates the model’s capability of reproducing the dynamics in LE across dif-
ferent time scales. This scale-dependent variability of the fluxes is the central idea behind the proposed DBF
concept, which is discussed in the following section.

In addition to LE and H, we also compared R,.; and G measurements from the Selhausen test site with model
results. These comparisons are not shown here for the sake of brevity. However, it should be mentioned that
the simulated R,.r and G show good agreement with the observations in terms of dynamics and magnitude
at daily and monthly time scales.

In our comparison of the spatially distributed mass and energy flux measurements over the Rur catchment
with the simulated results, some discrepancies between observations and model results appear, which may
be improved through model tuning or comprehensive model calibration. The comparisons are made
between point measurements and cell-centered model grid values based on a 1 km resolution. While the
hydrological system is heterogeneous at all scales, we assume that cell-centered values are representative
of the entire grid cells, which constitutes a major simplifying assumption. However, comparisons between
observed and simulated time series based on similar assumptions have been presented previously in sev-
eral useful studies related to understanding the processes in hydrological cycle [e.g., Goderniaux et al., 2009;
Fan and Miguez-Macho, 2010; Shen et al., 2013].

Uncertainty in the model parameter values is expected because of the coarse grid resolution considered in
this study. Various sources of uncertainty in physics-based distributed models have been discussed in sev-
eral studies [e.g., Beven and Binley, 1992; Moradkhani et al., 2005; Liu and Gupta, 2007]. The influence of
model parameterization on hydrological modeling results has been studied previously in connection with
parameter regionalization [e.g., Parajka et al., 2005; Samaniego et al., 2010]. In this study, we consider
pseudo-effective parameter values for each grid cell, which are based on our current best knowledge of
the terrestrial system. This limitation in representing the subgrid spatial heterogeneity in the model parame-
ter values may also contribute to discrepancies between the observed and simulated mass and energy
fluxes.
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Figure 7. Wavelet transform of observed and simulated latent heat flux, LE, at the Merzenhausen test site. The time localized power is
shown in the left panels. The cone of influence is indicated with the thick black lines in these plots. The right plots show the global wavelet
power.

The aim of this study, however, is not to perfectly reproduce the fluxes and states of the hydrological cycle
in a best-fit sense. We attempt to produce reasonable model dynamics and statistics (compared to the
observations) to represent processes in the coupled water and energy cycles so that the space-time variabil-
ity of these processes can be analyzed. For this purpose, the agreement between the observed and simu-
lated mass and energy balance components is adequate.

4.2. Coherence in Observed Processes

In the previous section, we examined the variability of the observed LE across different time scales using
the wavelet transform technique, which agrees well with the model results (Figure 7). In this section, we
examine the coherence between observed LE and WTD using the cross-wavelet transform technique
(Appendix A). This analysis is intended to explore the subsurface-land surface connection at different tem-
poral scales in a time-localized fashion.

Figure 8 shows the time-localized cross-wavelet power of daily average measured LE and WTD time series
at the Wuestebach test site. This figure shows cross-wavelet power at a monthly scale (about 32 day) in
summer (from June 2011 until August 2011). High cross-wavelet power is also observed at about 64 day
time scale. Figure 8 reveals the time-localized coherence between observed LE and WTD at two dominating
time scales on the order of months in summer. This result suggests that interconnections exist between
subsurface hydrodynamics and land surface processes at different time scales under moisture limited condi-
tions, which motivates the proposed DBF concept. In the following sections, we corroborate the observed
coherence patterns in Figure 8 with the model results.

4.3. Analysis of Simulated Space-Time Variability

According to the DBF concept, atmosphere and groundwater act as the upper and the lower boundary con-
ditions, respectively, for the land surface processes. As a first step, we illustrate the influence of atmospheric
variability on simulated land surface processes at different time scales. Figure 9 shows the time-localized
wavelet power of simulated R, and LE averaged over the catchment. The 1 day scale variability in R,;
spectrum is observed throughout the year, although it is less pronounced in the colder months. Addition-
ally, R,er spectrum shows variability at the 32 day time scale in summer. Similar to R, the wavelet power
spectrum of LE shows temporal variability at 1 day scale, indicating the connection between R,; and ET. At
larger time scales, LE variability does not directly correlate with R, in summer, although temporal patterns
at about 32-64 day are observed in the LE spectrum.

Figure 10 shows time-localized wavelet power of catchment-averaged precipitation (P), simulated relative
surface saturation (S,), and simulated WTD. The P and S, spectra show similar variability at time scales up to
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Figure 8. Time localized cross-wavelet power of daily average observed latent heat flux, LE, and groundwater table depth, WTD time series
at the Wuestebach test site.

8-16 day throughout the year. The variability of P is reflected in S, and WTD spectrum at about 16-32 day
time scale during February and September, which are the major recharge periods over the catchment. The
exception is September 2010, when 16-32 day variability is not visible in WTD spectrum. It should be men-
tioned that 2010 is the driest of the three simulated years. This may be the reason for the discontinuity in
the wavelet power spectrum of WTD, because simulated groundwater recharge dropped drastically during
this time period over the catchment. Additionally, variability in S, spectrum at 32-64 day time scale is
observed in summer. These results agree with the findings of Lauzon et al. [2004], who demonstrated that
the soil moisture data from the Orgeval watershed in France shows variability at time scales greater than 16
day in summer from 1998 until 2001.

According to the DBF concept, daily LE variability (Figure 9) influences groundwater dynamics under mois-
ture limited conditions (Figure 1, inset in WTD plot). Note that the 1 day temporal pattern is visible in the
WTD wavelet power spectrum in Figure 10, which is due to the daily groundwater contribution to meet ET
demand under soil moisture limited conditions [e.g., Fahle and Dietrich, 2014]. Therefore, Figures 9 and 10
connect atmospheric forcing (i.e., R,e;) and subsurface hydrodynamics to land surface energy fluxes on a 1
day time scale.

Figure 11a shows the difference between simulated daily average LE,,; and LE over the simulation period to
demonstrate the influence of moisture on ET. Significant differences between LE,.; and LE (LE, - LE) are

Net radiation (R,)
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Figure 9. Time localized wavelet power of net radiation, R, and latent heat flux, LE.
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Figure 10. Time localized wavelet power of Precipitation, P, relative surface saturation, S,, and groundwater table depth, WTD. The
enlarged part of WTD spectrum (from January 2010 until December 2011) shows the power with small amplitude at 1-4.5 day time scale.

observed in summer, especially in 2010. As mentioned earlier, 2010 is the driest of the three simulated
years, which is the reason for the high LE,,; — LE observed in this year. According to the DBF concept,
groundwater influences LE because of the dependence of ET on capillary rise of moisture from the

free groundwater table (Figure 1). Figure 11b shows the time-localized cross-wavelet power spectrum of
LEpo: — LE and WTD to illustrate this connection. This figure shows cross-wavelet power during summer at 1
day time scale, while the phase arrows indicate that the two time series generally show an antiphase rela-
tionship at this time scale. At the 32 day time scale, consistent high cross-wavelet power is observed in
summer. At this scale, the phase arrows show that the WTD time series slightly leads the LE,,; — LE time
series, which demonstrates the feedback of WTD variability on summer ET at this time scale. In 2010 and
2011, significant wavelet power at the time scales greater than 64 day suggests that under dry conditions,
coherence between LE,,. — LE and WTD is extended to larger time periods.

The wavelet transform analysis above correlates the mass and energy balance components across different
time scales using the catchment-averaged time series in the context of DFB concept. In order to
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Figure 11. Difference between daily average simulated potential and actual latent heat flux, LE,o: — LE (a), and time-localized cross-wave-
let power of LE,.; — LE and water table depth, WTD, over the simulation period. The arrows show the phase relationship between the two
time series (right arrow: in phase; left arrow: antiphase; up arrow: LE,,. — LE is leading by 90°; and down arrow: WTD is leading by 90°).

demonstrate the coherence between the spatial patterns of these processes, we present log-log unit semi-
variograms (i.e., power spectra [e.g., Wen and Sinding-Larsen, 1997; Gneiting et al., 2012]) of simulated LE,
WTD, and R,,e; in summer and winter over the Rur catchment in Figure 12. Note that these semivariograms
are based on the average summer and winter time fluxes over the three simulated years (2009-2011).

The unit semivariogram of R,,.; does not exhibit a clear sill within the length scale of the catchment in
summer or winter. This indicates that the spatial structure of R, either follows a power law behavior or a
large-scale stationary process with a correlation scale larger than the catchment. While the unit semivario-
gram of WTD shows spatial correlation for scales less than 5 km throughout the year, the LE semivariogram
exhibits strong seasonal dependence. In summer, the unit semivariogram of LE shows similar spatial pattern
to that of WTD, with correlation for scales less than 5 km. During winter, on the contrary, the semivariogram
of LE shows similar behavior to that of R,.; with monotonically increasing semivariance and without a dis-
tinct sill within the length scale of the catchment.

Summer 10° Winter
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Figure 12. Unit semivariograms of latent heat flux, LE, groundwater table depth, WTD, and net radiation, R, in summer and winter. Note
the log-log scale.
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The cross semivariograms in Figure 13
—— ngmer demonstrate the spatial coherence
Winter between LE and WTD in summer and win-
—/- 2 ter. Under soil moisture limited condi-
tions (summer), the LE and WTD are
negatively correlated for scales less than
5 km, which agrees well with the uni-
variate semivariograms for these varia-
bles (Figure 12). In winter, on the other
hand, LE and WTD show weaker positive
correlation and the cross semivariogram
does not exhibit a clear sill within the
length scale of the catchment.

4
o

Cross-semivariance (summer)
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According to the proposed DBF concept,
the groundwater influence on ET is
observed under soil moisture-limited
0 5 1‘0 15 conditions. The variogram analysis illus-
Lag distance (km) trates groundwater and atmospheric
forcing control on the spatial pattern of
Figure 13. Cross semivariograms of latent heat flux, LE, and groundwater table LE in summer and winter, respectively.
depth, WTD in summer and winter. Note the dual y axis. The negative correlation between LE and
WTD in Figure 13 demonstrates the inter-
connection between the spatial patterns of groundwater and ET under dry conditions. This negative correla-
tion exists due to higher ET at locations with shallower groundwater table depth and vice versa, which
suggests the groundwater control on the spatial pattern of summer ET. In winter, LE semivariogram shows
similar behavior to that of R, (Figure 12) because of the prevailing energy-limited conditions over the
catchment during the colder months of the year.

5. Summary and Conclusions

In this study, the concept of the dual-boundary forcing (DBF) is proposed to describe and quantify the feed-
back mechanisms between different compartments of the hydrological cycle in space and time. According
to the proposed DBF concept, the atmosphere and groundwater act as the upper and lower boundary con-
ditions, respectively, for land surface processes. These boundary conditions influence the land surface at dif-
ferent space-time scales. The availability of energy and moisture determines the dominating boundary
condition for the exchange processes.

The coupled subsurface-land surface model ParFlow.CLM was applied on the Rur catchment, Germany,
and the space-time patterns of the mass and energy fluxes were analyzed using wavelet transform
and variogram techniques to verify this concept. Prior to this analysis, a comparison between the
model results and observations was performed, which shows reasonable agreement for different mass
and energy fluxes even without comprehensive model calibration. While uncertainties in the simula-
tion results may arise from model structure, parameters, and atmospheric forcing data, ParFlow.CLM is
forced by re-analysis data sets from COSMO-DE and ensures closure of the mass and energy balances
resulting in an internally consistent description of the relevant process, system dynamics, and
feedbacks.

The results suggest that at the daily time scale, ET variability is driven by the radiative atmospheric forcing
(Rner)- This variability of ET influences the subsurface hydrodynamics and creates the diurnal WTD fluctuation
through daily water uptake under moisture-limited conditions, which is analogous to periodic pumping of
groundwater. Groundwater storage, on the other hand, depletes due to this withdrawal and influences ET
mainly at the monthly time scale under moisture-limited conditions in summer. It was also demonstrated
that this influence extends to multimonth time scales in dry periods.

It should be mentioned that the groundwater control on ET may be significant at even longer time scales
due to the long-term memory effect of subsurface hydrodynamics under e.g., prolonged drought
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conditions. This influence was not considered here due to data limitation, because the simulation was per-

formed and compared to measured data over 3 years (2009-2011). However, this effect can also be interro-
gated utilizing the proposed techniques with extended time series of fluxes and states, which is planned in
future.

The variogram analysis demonstrates the seasonal dependence of spatial variability of ET. Under energy-
limited conditions, the spatial pattern of ET is determined by R, Strong influence of groundwater on
the spatial variability of ET is observed under moisture-limited conditions. These findings suggest that
water table observations are useful in predicting the spatial pattern of ET in summer. In winter, however,
the spatial pattern of ET may be predicted from R,.; measurements alone (e.g., from remote sensing
observations).

It has been discussed earlier that the simulation results may be affected by the coupled model structure,
grid resolution, parameterization, and interpolation of atmospheric forcing data. There is a need of a com-
prehensive sensitivity and uncertainty analysis study to assess the impact of the aforementioned issues on
DBF concept, which would require novel, nontraditional approaches and large computer resources. This is
beyond the scope of the current study and should be the subject of future research.

Appendix A

A1. Variogram Analysis

In this study, the spatial variability of different fluxes in the coupled water and energy cycles are analyzed
using semivariograms. According to Goovaerts [1997], the experimental semivariogram for a spatially dis-
tributed attribute z is calculated as

=

;) .
y(h):W(h)ﬁ [z(uo) —z(ua+h))

o

where h is the lag distance, N is the number of pairs, and u is measurement location. The cross semivario-
gram between z, and z, is calculated as

N(h)
yab(h)= #(h) [za(ua) —za(uo+h)].[zb(ua) —zb(ua+h))

=1

In this study, we calculate omnidirectional variograms, which assumes that the data are isotropic.

A2, Continuous Wavelet Transform Analysis

The wavelet transform is a useful tool in analyzing time series variability and has been used previously to
analyze various geophysical data [e.g., Andreo et al., 2006; Liu et al., 2011; Perez-Valdivia et al., 2012]. We use
continuous wavelet transform analysis to show the time-localized temporal variance of different processes
as a function of frequency. If x,, is a time series (n = 0 ... N-1) with an equal time spacing of dt, according to
Torrence and Compo [1997], the continuous wavelet transform of x,, can be defined as its convolution with a
scaled and translated version of a wavelet function (1)

N—=1 ’_
Wn(s):Zx,,/zpo * {w}
n'=0

where s is the wavelet scale and (*) denotes the complex conjugate. The wavelet function depends on the
nondimensional time parameter . In this study, we use the Morlet wavelet as the wavelet function, which
can be expressed as

'100(77) =1~ 1 /4eiwone—r]2/2

where wy is the nondimensional frequency. The global wavelet power is obtained by averaging the wavelet
powers over the localized time instances and can be defined as
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. 18 ,
w (S):N [Wn(s)|
=

0
The cross-wavelet spectrum of two time series x and y can be defined as
WY =W (s)W;  (s)

where WX(s) and W (s) denote the wavelet transform of x and y, respectively. According to Torrence and
Compo [1997], high cross-wavelet power indicates covariance between the time series. Grinsted et al. [2004]
argued that a phase-locked phenomenon with high cross-wavelet power implies a cause and effect rela-
tionship between two time series.
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