000171936 001__ 171936
000171936 005__ 20210129214333.0
000171936 0247_ $$2doi$$a10.1175/MWR-D-14-00029.1
000171936 0247_ $$2ISSN$$a0027-0644
000171936 0247_ $$2ISSN$$a1520-0493
000171936 0247_ $$2WOS$$aWOS:000341171100024
000171936 0247_ $$2Handle$$a2128/20688
000171936 0247_ $$2altmetric$$aaltmetric:2310108
000171936 037__ $$aFZJ-2014-05490
000171936 082__ $$a550
000171936 1001_ $$0P:(DE-HGF)0$$aShrestha, P.$$b0$$eCorresponding Author
000171936 245__ $$aA Scale-Consistent Terrestrial Systems Modeling Platform Based on COSMO, CLM, and ParFlow
000171936 260__ $$aWashington, DC [u.a.]$$bAMS87486$$c2014
000171936 3367_ $$2DRIVER$$aarticle
000171936 3367_ $$2DataCite$$aOutput Types/Journal article
000171936 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414740474_22329
000171936 3367_ $$2BibTeX$$aARTICLE
000171936 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171936 3367_ $$00$$2EndNote$$aJournal Article
000171936 520__ $$aA highly modular and scale-consistent Terrestrial Systems Modeling Platform (TerrSysMP) is presented. The modeling platform consists of an atmospheric model (Consortium for Small-Scale Modeling; COSMO), a land surface model (the NCAR Community Land Model, version 3.5; CLM3.5), and a 3D variably saturated groundwater flow model (ParFlow). An external coupler (Ocean Atmosphere Sea Ice Soil, version 3.0; OASIS3) with multiple executable approaches is employed to couple the three independently developed component models, which intrinsically allows for a separation of temporal–spatial modeling scales and the coupling frequencies between the component models.Idealized TerrSysMP simulations are presented, which focus on the interaction of key hydrologic processes, like runoff production (excess rainfall and saturation) at different hydrological modeling scales and the drawdown of the water table through groundwater pumping, with processes in the atmospheric boundary layer. The results show a strong linkage between integrated surface–groundwater dynamics, biogeophysical processes, and boundary layer evolution. The use of the mosaic approach for the hydrological component model (to resolve subgrid-scale topography) impacts simulated runoff production, soil moisture redistribution, and boundary layer evolution, which demonstrates the importance of hydrological modeling scales and thus the advantages of the coupling approach used in this study.Real data simulations were carried out with TerrSysMP over the Rur catchment in Germany. The inclusion of the integrated surface–groundwater flow model results in systematic patterns in the root zone soil moisture, which influence exchange flux distributions and the ensuing atmospheric boundary layer development. In a first comparison to observations, the 3D model compared to the 1D model shows slightly improved predictions of surface fluxes and a strong sensitivity to the initial soil moisture content.
000171936 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000171936 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000171936 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000171936 7001_ $$0P:(DE-HGF)0$$aSulis, M.$$b1
000171936 7001_ $$0P:(DE-HGF)0$$aMasbou, M.$$b2
000171936 7001_ $$0P:(DE-Juel1)151405$$aKollet, S.$$b3$$ufzj
000171936 7001_ $$0P:(DE-HGF)0$$aSimmer, C.$$b4
000171936 773__ $$0PERI:(DE-600)2033056-X$$a10.1175/MWR-D-14-00029.1$$gVol. 142, no. 9, p. 3466 - 3483$$n9$$p3466 - 3483$$tMonthly weather review$$v142$$x1520-0493$$y2014
000171936 8564_ $$uhttps://juser.fz-juelich.de/record/171936/files/FZJ-2014-05490.pdf$$yOpenAccess
000171936 909CO $$ooai:juser.fz-juelich.de:171936$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000171936 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000171936 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000171936 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000171936 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000171936 9141_ $$y2014
000171936 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171936 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171936 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171936 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171936 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171936 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171936 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171936 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171936 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171936 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000171936 980__ $$ajournal
000171936 980__ $$aVDB
000171936 980__ $$aUNRESTRICTED
000171936 980__ $$aI:(DE-Juel1)IBG-3-20101118
000171936 9801_ $$aFullTexts