000171948 001__ 171948
000171948 005__ 20210129214336.0
000171948 0247_ $$2arXiv$$aarXiv:1410.7917
000171948 0247_ $$2Handle$$a2128/10217
000171948 0247_ $$2altmetric$$aaltmetric:2822515
000171948 037__ $$aFZJ-2014-05502
000171948 1001_ $$0P:(DE-HGF)0$$aBorsanyi, Szabolcs$$b0
000171948 1112_ $$aThe 32nd International Symposium on Lattice Field Theory$$cColumbia University, New York, NY$$d2014-06-23 - 2014-06-28$$gLattice 2014$$wUSA
000171948 245__ $$aRecent results on the Equation of State of QCD
000171948 260__ $$c2014
000171948 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1415169013_23047$$xOther
000171948 3367_ $$033$$2EndNote$$aConference Paper
000171948 3367_ $$2DataCite$$aOther
000171948 3367_ $$2ORCID$$aLECTURE_SPEECH
000171948 3367_ $$2DRIVER$$aconferenceObject
000171948 3367_ $$2BibTeX$$aINPROCEEDINGS
000171948 520__ $$aWe report on a continuum extrapolated result (arXiv:1309.5258) for the equation of state (EoS) of QCD with $N_f=2+1$ dynamical quark flavors and discuss preliminary results obtained with an additional dynamical charm quark ($N_f=2+1+1$). For all our final results, the systematics are controlled, quark masses are set to their physical values, and the continuum limit is taken using at least three lattice spacings corresponding to temporal extents up to $N_t=16$.
000171948 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000171948 588__ $$aDataset connected to arXivarXiv
000171948 7001_ $$0P:(DE-HGF)0$$aFodor, Zoltan$$b1
000171948 7001_ $$0P:(DE-HGF)0$$aHoelbling, Christian$$b2
000171948 7001_ $$0P:(DE-HGF)0$$aKatz, Sandor D.$$b3
000171948 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b4$$eCorresponding Author$$ufzj
000171948 7001_ $$0P:(DE-HGF)0$$aRatti, Claudia$$b5
000171948 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b6$$ufzj
000171948 773__ $$y2014
000171948 8564_ $$uhttps://juser.fz-juelich.de/record/171948/files/1410.7917v1.pdf$$yOpenAccess
000171948 8564_ $$uhttps://juser.fz-juelich.de/record/171948/files/1410.7917v1.gif?subformat=icon$$xicon$$yOpenAccess
000171948 8564_ $$uhttps://juser.fz-juelich.de/record/171948/files/1410.7917v1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000171948 8564_ $$uhttps://juser.fz-juelich.de/record/171948/files/1410.7917v1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000171948 8564_ $$uhttps://juser.fz-juelich.de/record/171948/files/1410.7917v1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000171948 909CO $$ooai:juser.fz-juelich.de:171948$$pdriver$$pVDB$$popen_access$$popenaire
000171948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000171948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000171948 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data $$x0
000171948 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000171948 9141_ $$y2014
000171948 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171948 915__ $$0LIC:(DE-HGF)CCBYNCSA3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 3.0
000171948 920__ $$lyes
000171948 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000171948 980__ $$aconf
000171948 980__ $$aVDB
000171948 980__ $$aUNRESTRICTED
000171948 980__ $$aI:(DE-Juel1)JSC-20090406
000171948 9801_ $$aUNRESTRICTED
000171948 9801_ $$aFullTexts