000171952 001__ 171952
000171952 005__ 20230426083113.0
000171952 0247_ $$2doi$$a10.1103/PhysRevB.89.195405
000171952 0247_ $$2Handle$$a2128/8049
000171952 0247_ $$2WOS$$aWOS:000335560500004
000171952 0247_ $$2altmetric$$aaltmetric:1816063
000171952 037__ $$aFZJ-2014-05506
000171952 082__ $$a530
000171952 1001_ $$0P:(DE-Juel1)141753$$aHell, Michael$$b0$$eCorresponding Author$$ufzj
000171952 245__ $$aCoherent back action of quantum dot detectors: Qubit spin precession
000171952 260__ $$aCollege Park, Md.$$bAPS$$c2014
000171952 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s171952
000171952 3367_ $$2DataCite$$aOutput Types/Journal article
000171952 3367_ $$00$$2EndNote$$aJournal Article
000171952 3367_ $$2BibTeX$$aARTICLE
000171952 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171952 3367_ $$2DRIVER$$aarticle
000171952 520__ $$aA sensitive technique for the readout of the state of a qubit is based on the measurement of the conductance through a proximal sensor quantum dot (SQD). Here, we theoretically study the coherent backaction of such a measurement on a coupled SQD-charge-qubit system. We derive Markovian kinetic equations for the ensemble-averaged state of the SQD-qubit system, expressed in the coupled dynamics of two charge-state occupations of the SQD and two qubit isospin vectors, one for each SQD charge state. We find that aside from introducing dissipation, the detection also renormalizes the coherent evolution of the SQD-qubit system. Basically, if the electron on the detector has time to probe the qubit, then it also has time to fluctuate and thereby renormalize the system parameters. In particular, this induces torques on the qubit isospins, similar to the spin torque generated by the spintronic exchange field in noncollinear spin-valve structures. Second, we show that for a consistent description of the detection, one must also include the renormalization effects in the next-to-leading order in the electron tunneling rates, especially at the point of maximal sensitivity of the detector. Although we focus on a charge-qubit model, our findings are generic for qubit readout schemes that are based on spin-to-charge conversion using a quantum dot detector. Furthermore, our study of the stationary current through the SQD, a test measurement verifying that the qubit couples to the detector current, already reveals various significant effects of the isospin torques on the qubit. Our kinetic equations provide a starting point for further studies of the time evolution in charge-based qubit readout. Finally, we provide a rigorous sum rule that constrains such approximate descriptions of the qubit isospin dynamics and show that it is obeyed by our kinetic equations.
000171952 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000171952 542__ $$2Crossref$$i2014-05-07$$uhttp://link.aps.org/licenses/aps-default-license
000171952 7001_ $$0P:(DE-Juel1)131026$$aWegewijs, Maarten Rolf$$b1$$ufzj
000171952 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b2$$ufzj
000171952 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.89.195405$$bAmerican Physical Society (APS)$$d2014-05-07$$n19$$p195405$$tPhysical Review B$$v89$$x1098-0121$$y2014
000171952 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.89.195405$$n19$$p195405$$tPhysical review / B$$v89$$x1098-0121$$y2014
000171952 8564_ $$uhttps://juser.fz-juelich.de/record/171952/files/FZJ-2014-05506.pdf$$yOpenAccess
000171952 8564_ $$uhttps://juser.fz-juelich.de/record/171952/files/FZJ-2014-05506.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000171952 8564_ $$uhttps://juser.fz-juelich.de/record/171952/files/FZJ-2014-05506.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000171952 8564_ $$uhttps://juser.fz-juelich.de/record/171952/files/FZJ-2014-05506.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000171952 909CO $$ooai:juser.fz-juelich.de:171952$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000171952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141753$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000171952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131026$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000171952 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000171952 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000171952 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000171952 9141_ $$y2014
000171952 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000171952 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171952 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000171952 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171952 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171952 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171952 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000171952 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000171952 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000171952 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171952 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171952 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000171952 920__ $$lyes
000171952 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000171952 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000171952 9801_ $$aFullTexts
000171952 980__ $$ajournal
000171952 980__ $$aVDB
000171952 980__ $$aUNRESTRICTED
000171952 980__ $$aFullTexts
000171952 980__ $$aI:(DE-Juel1)PGI-2-20110106
000171952 980__ $$aI:(DE-82)080009_20140620
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.147902
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1116955
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.160503
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2794995
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.161308
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.280.5367.1238
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01642
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1691491
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.180601
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/36057
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045309
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.277901
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.155420
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.035309
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045340
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.83.012304
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.195345
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.166602
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.125451
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.205408
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.134513
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.014509
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0370-2693(82)90169-1
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0370-2693(99)00659-0
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.073303
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.075325
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.15400
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.73.357
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.235424
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.235307
000171952 999C5 $$1H.-P. Breuer$$2Crossref$$oH.-P. Breuer The Theory of Open Quantum Systems 2002$$tThe Theory of Open Quantum Systems$$y2002
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730802218067
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.85.032110
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02693
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.121402
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.18436
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2009-00962-3
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.205319
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.087202
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.127203
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys931
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.176808
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.61.022301
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.195416
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01608389
000171952 999C5 $$1E. B. Davies$$2Crossref$$oE. B. Davies 1975$$y1975
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0378-4371(89)90490-1
000171952 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/43/40/405304