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Coherent backaction of quantum dot detectors: Qubit isospin precession
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A sensitive technique for the readout of the state of a qubit is based on the measurement of the conductance
through a proximal sensor quantum dot (SQD). Here, we theoretically study the coherent backaction of such a
measurement on a coupled SQD-charge-qubit system. We derive Markovian kinetic equations for the ensemble-
averaged state of the SQD-qubit system, expressed in the coupled dynamics of two charge-state occupations of
the SQD and two qubit isospin vectors, one for each SQD charge state. We find that aside from introducing
dissipation, the detection also renormalizes the coherent evolution of the SQD-qubit system. Basically, if the
electron on the detector has time to probe the qubit, then it also has time to fluctuate and thereby renormalize the
system parameters. In particular, this induces torques on the qubit isospins, similar to the spin torque generated
by the spintronic exchange field in noncollinear spin-valve structures. Second, we show that for a consistent
description of the detection, one must also include the renormalization effects in the next-to-leading order in
the electron tunneling rates, especially at the point of maximal sensitivity of the detector. Although we focus
on a charge-qubit model, our findings are generic for qubit readout schemes that are based on spin-to-charge
conversion using a quantum dot detector. Furthermore, our study of the stationary current through the SQD, a test
measurement verifying that the qubit couples to the detector current, already reveals various significant effects
of the isospin torques on the qubit. Our kinetic equations provide a starting point for further studies of the time
evolution in charge-based qubit readout. Finally, we provide a rigorous sum rule that constrains such approximate
descriptions of the qubit isospin dynamics and show that it is obeyed by our kinetic equations.
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I. INTRODUCTION

Quantum computation demands the readout of the state
of a quantum bit (qubit) with high fidelity. In principle, this
can be realized exclusively using all-electric components by
spin singlet-triplet qubits [1,2], manipulated by gate voltages
and read out by spin-to-charge conversion. This technique
utilizes a capacitive coupling of the qubit to a nearby quantum
point contact (QPC) [3,4] or a sensor quantum dot (SQD) [5].
The latter is advantageous due to its higher sensitivity,
resulting in larger signal-to-noise ratio [5]. Charge sensing
by radio-frequency single-electron transistors (RF-SETs), first
introduced in [6] as a static electrometer, moreover allows
real-time observation of electron tunneling events [7], which
can be applied to measure ultrasmall currents [8], to test
fluctuation relations in electronic systems [9] or as which-path
detectors in an Aharonov-Bohm ring [10]. However, in all
these setups, the measured system suffers from dephasing
by the environment, which leads to a cumulative error that
is eventually beyond the reach of quantum error-correction
schemes. Yet, such dissipative environmental backaction
effects can also be controlled, as for example demonstrated
by the destruction of Aharonov-Bohm oscillations [10,11].
This may even offer new prospects for qubit control, e.g., by
mediating effective interactions between qubits that can be
implemented to engender entanglement [12–15]. In addition,
quantum memories may be realized by engineering quantum
states through dissipation [16].

Similar dissipative environmental effects are also well
known from nonequilibrium transport through quantum dots

(QDs). However, when a QD is embedded into a spintronic
device with ferromagnetic electrodes, dissipative effects are
not the only way in which it is influenced by the environ-
ment, even in leading order in the coupling: spin-dependent
scattering and Coulomb interaction lead to the generation of
a spin torque. This torque derives from coherent processes
that renormalize the QD energy levels [17–19], resulting in
an effective magnetic field, known as the spintronic exchange
field [17,18]. The dynamical consequence of the torque is
a precession of the average spin vector on the QD [18], in
addition to the shrinking of the spin magnitude, which is a pure
dissipative effect. Renormalization effects have not only been
discussed for spintronic devices, but also for STM setups [20]
and superconducting nanostructures [21,22]. In the latter case,
effective magnetic fields act on an isospin that describes
proximity-induced coherences between different charge states
on the QD [21,22]. Moreover, environmentally induced
torques are not only limited to fermionic systems, they have
also been discussed for optical activity [23]. In the context of
quantum dot readout, they have been considered for QPCs [24].

It is therefore natural to ask whether similar coherent effects
arise when a qubit is measured by a SQD since any type of
readout requires interaction of the system with its detector,
which may lead to renormalization effects. This is the main
focus of this paper: we derive and discuss kinetic equations
for the reduced density matrix of the composite system of
SQD and qubit by integrating out the lead degrees of freedom
and employing a Markov approximation. Related previous
works have studied, e.g., decoherence effects for electrostatic
qubits [25,26] or Josephson junction qubits [27,28] focusing
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on time-dependent phenomena. In our study, we address
the continuous measurement limit, in which the qubit level
splitting � and the SQD-qubit coupling λ are small compared
to the single-electron tunneling (SET) rates � through the
SQD: λ,� � �. In this limit, each electron “sees” a snapshot
of the qubit state as the qubit evolution is negligible during the
interaction time with an electron on the detector. Our results
are not only limited to weak measurements (λ � �), but are
also valid for λ � � � �.

We extend previous works in the following four aspects:
(i) We include level renormalization effects of the qubit

plus the detector in the kinetic equations affecting the
energy-nondiagonal part of their density matrix. These effects
correspond physically to isospin torque terms that couple the
SQD and qubit dynamics. These torques arise due to the
readout processes and can not be avoided: they incorporate a
term that scales in the same way as the readout terms ∼�λ/T ,
where T is temperature. Moreover, the renormalization of the
qubit splitting � leads to additional induced torque terms
∼��/T , expressing the fact that the charge fluctuations
∼� are sensitive to all internal energy scales (�,λ) of the
SQD-qubit system.

(ii) Our kinetic equations also necessarily comprise next-
to-leading-order corrections to the tunneling ∼�2/T affecting
also the diagonal part of the density matrix. Generally, these
are expected to be important since maximal sensitivity of the
SQD to the qubit state is achieved by tuning to the flank
of the SET peak. In this regime of crossover to Coulomb
blockade, cotunneling broadening and level renormalization
effects may compete with SET processes ∼�. Indeed, in
actual readout experiments on singlet-triplet qubits [5] � ∼ T .
Moreover, the inclusion of this renormalization of the SQD
tunnel rates is even a mandatory step since the weaker
isospin-torque effects ∼�λ/T ,��/T must be included to
consistently describe detection at all.
The importance of such an interplay between energy-diagonal
and nondiagonal density matrix parts and higher-order tunnel
processes was noted earlier in Refs. [29,30]. As in that
study, we find that the failure to account for this leads to
severe problems with the positivity of the density operator
in the Markovian approximation. In standard Born-Markov
approaches [31] used to study decoherence effects [32],
positivity is usually enforced by a secular approximation [31].
As explained in more detail in Appendix E, a secular approx-
imation is not applicable in our case because the tunneling
rate is not assumed to be small (� � �,λ). Despite this, the
positivity of the density matrix is ensured when consistently
including corrections ∼�2/T , as shown in Appendix D.

(iii) In extension to Refs. [25–28], we include the electron
spin degree of the SQD into our study. This has several
consequences, most notably, for the qubit-dependent part of
the current through the SQD: this current does not directly
measure the qubit isospin, but charge-projected contributions
that are weighted differently due to the SQD electron spin.

(iv) Finally, our results cover a broad experimentally
relevant regime of finite voltages and temperatures, and
not only limits of, e.g., infinite bias voltage Vb in [25,26]
or zero temperature T as in [27,28]. The interplay of the
above renormalization effects leads to nontrivial voltage
dependencies, similar to that in quantum dot spin valves.

On the technical side, we provide an important sum rule
for the qubit dynamics: the kinetic equations must reproduce
the free qubit evolution (i.e., for zero tunnel coupling) when
tracing over the interacting SQD degrees of freedom in
addition to the electrodes. This is a concrete application of
the generalized current conservation law discussed in [33]. We
show that our kinetic equations are consistent with this current
conservation. It may be violated if instead a Born-Markov
approach followed by a secular approximation is applied [33]
as we demonstrate for our concrete model in Appendix E.
More generally, such a sum rule has to hold for any observable
that is conserved by the tunneling. We furthermore prove in
Appendix D that any kinetic equation derived from real-time
diagrammatics respects this sum rule order by order in SQD
tunnel coupling �.

Compared with previous works, however, our study is
limited: we focus on the analysis of the kinetic equations in the
stationary limit. Although for quantum information processing
ultimately the measurement dynamics is of interest, we apply
our general kinetic equations only to test measurements
designed to verify that the SQD couples to a nearby qubit at all.
We compare the ensemble-averaged current and differential
conductance through the SQD as the readout strength is varied.
Our study clearly indicates that already here the isospin torque
terms have a significant impact. This indicates that these
terms will also influence the transient behavior of the qubit
in the measurement process. The kinetic equations that we
derive, however, provide a starting point for a more general
analysis of coherent backaction effects, which is, however,
beyond the scope of this paper. This is of interest both for
understanding the limitations of qubit readout devices as well
as for exploring new means of controlling qubits by coherent
backaction effects.

The paper is organized as follows. After formulating the
model in Sec. II, we introduce in Sec. III the charge-projected
qubit isospins and analyze their dynamics in dependence on the
SQD charge, in particular the isospin-torque contributions to
the kinetic equations. In Sec. IV, we illustrate the quantitative
importance of the isospin torques for the readout current
through the sensor QD and study the corrections it gives to
the stationary readout current and differential conductance,
which is often measured directly. We find that torque terms
may significantly alter the qubit-dependent conductance, up to
30% for typical experimental values for the asymmetry of the
SQD tunnel couplings. We summarize and discuss possible
extensions in Sec. V.

II. QUBIT READOUT

The readout of spin qubits is usually reduced to a charge
readout by spin-to-charge conversion [5,34]. Therefore, we
focus here on the conceptually clearest problem, sketched in
Fig. 1, namely, the capacitive readout of a charge qubit. The
qubit itself consists of a double quantum dot occupied by a
single electron, which occupies either an orbital localized on
the left or right dot (l = L,R). These states are denoted by

|l〉 = a
†
l |0〉Q, (1)
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FIG. 1. (Color online) Sensor quantum dot (SQD) tunnel coupled
to source and drain electrode and capacitively coupled to a qubit,
whose different logical states involve two possible positions left and
right in a double quantum dot. If the qubit electron is left (a) or right
(b), the Coulomb repulsion to the SQD electron is larger or smaller,
respectively, compared to full delocalization of the qubit electron. We
note that the spin-qubit readout can be mapped onto a charge-qubit
readout utilizing spin-to-charge conversion.

with al , a
†
l denoting the electron field operators of the qubit.

The qubit is described by a Hamiltonian accounting for a real
hopping amplitude � between the orbitals:

HQ = 1
2�(a†

LaR + a
†
RaL). (2)

The isolated eigenstates of the qubit are thus superposition
states 1√

2
(a†

L ± a
†
R)|0〉, corresponding to an isospin in the x

direction when a
†
L|0〉 and a

†
R|0〉 denote isospin-up and -down

along the z direction, respectively. Since we assume that
the real spin of the qubit electron does not couple to the
measurement device, it remains fixed and we have omitted
this quantum number from the beginning.

The sensor quantum dot (SQD) is modeled by a single,
interacting, spin-degenerate orbital level with Hamiltonian

HS =
∑

σ

εnσ + Un↑n↓, (3)

containing the occupation operator nσ = d†
σ dσ for electrons of

spin σ = ↑,↓, whose annihilation and creation operators are
dσ and d†

σ , respectively. Due to the strong Coulomb repulsion
of the quantum-confined electrons, the double occupation
of the SQD costs an additional energy U . Typically, U is
the largest energy scale (except for the bandwidth of the
leads, denoted by D): charging energies are on the order
of ∼0.1−1 meV [8,35]. Close to the SET resonance used
for detection (cf. Sec. IV A), this allows us to exclude the
doubly occupied state of the SQD, retaining only |0〉S and
|σ 〉S = d†

σ |0〉S . This, however, implies that we need to keep
track of the spin degree of freedom of the electrons (neglected
in [26–28]) unless a high magnetic field is applied. However,

for singlet-triplet qubits, the applied magnetic fields (required
to define the qubit) are in the range of ∼100 mT [2,3]. The
corresponding energy splittings in GaAs are a few μeV,
which is much smaller than typical voltage bias ∼50 μeV [5].
Therefore, both spin channels are energetically accessible and
in general are relevant for the detection current through the
SQD with noticeable consequences, as we discuss in Sec. IV A.
Furthermore, these magnetic energies are of the same order as
typical tunneling rates �. This implies that renormalization
effects may be important since states of the SQD plus qubit
system can be mixed by the tunnel coupling to the electrodes.
For the sake of simplicity, we assume zero magnetic field here,
resulting in energy-degenerate spin-up and -down states on
the SQD.

The readout of the qubit state using the SQD involves two
couplings: the first one is the capacitive interaction of the
total charge n = n↑ + n↓ on the sensor QD with the charge
configuration of the qubit, given by

HI = 1
2nλ(a†

LaL − a
†
RaR). (4)

This qubit-dependent energy shift by ±λ/2 in turn affects the
charge current through the SQD from the source to the drain
electrodes, which are described as noninteracting reservoirs

HR =
∑
r,k,σ

ωrkσ c
†
rkσ crkσ , (5)

each in equilibrium at common temperature T , but held
at different electrochemical potentials μs = V/2 and μd =
−V/2. Here, crkσ are the field operators referring to orbital k

and spin σ in source (r = s) and drain (r = d), respectively.
The second coupling involved in the readout process is the
tunneling from the SQD to the electrodes, and vice versa,
accounted for by

HT =
∑
r,k,σ

trc
†
rkσ dσ + H.c. (6)

The relevant energy scale is given, in terms of the tunneling
amplitudes tr and the density of states νr of lead r , by the
tunneling rates �r = 2π |tr |2νr . For the sake of simplicity, we
take both tr and νr to be spin (σ ) and energy (k) independent.
The source-drain coupling asymmetry γ = √

�s/�d of the
SQD, however, is a crucial parameter.

For our analysis, we will assume the conceptually sim-
plest continuous measurement limit λ,� � � and perform
a controlled perturbative calculation. In the experimental
situation [5,7], in which the coupling λ ∼ �, the effects may
be even stronger.

III. CHARGE-DEPENDENT ISOSPIN DYNAMICS

A. Density operator and isospins

In the following, we express the action of the qubit state
on the SQD and the corresponding backaction in terms of the
isospin operator

τ̂i =
∑
l,l′

(σi)ll′a
†
l al′ , (7)

where σi denotes the Pauli matrix for i = x,y,z. The ensemble
average of the isospin τ = 〈τ̂ 〉 is obtained by averaging
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over the state of (integrating out) both electrodes and SQD.
This qubit Bloch vector characterizes the reduced density
operator of the qubit and is conveniently normalized to 1.
Its z component τz quantifies the imbalance of the probability
to find the qubit electron in left orbital rather than the right
orbital, while τx and τy quantify coherences between the left
and right occupations.

It is, however, difficult to directly obtain a kinetic equation
for the isospin τ while incorporating the various effects of
the measurement. A general reason for this is that the SQD
is also a microscopic system, so that the action of the qubit
on the sensor dynamics is not negligible, which then in turn
affects the backaction of the sensor on the qubit. Another
complication arises since we take into account an interacting
detector (with proper spinful electrons), which technically can
not be integrated out easily. Moreover, the SQD is driven out
of equilibrium by the connected electron reservoirs.

We therefore instead derive a kinetic equation for the
reduced density matrix ρ(t) of SQD plus qubit by integrating
out only the electrodes. Yet, this requires two Bloch vectors
for a complete description of the qubit, as we now explain.
The Hilbert space of the joint qubit-SQD system is spanned
by six states denoted by |σ 〉S ⊗ |l〉Q with l = L,R referring to
the state of the qubit and σ = 0,↑,↓ denoting the state of the
SQD. Thus, the reduced density operator ρ(t) corresponds to
a 6 × 6 matrix. However, since the charge, the z component
of the (real) spin, and the total spin are conserved for the total
system including the leads [29], the reduced density operator
is diagonal in the SQD degrees of freedom and independent of
the choice of quantization axis of the real spin. Thus, we only
need two 2 × 2 density matrices ρn

Q, one for each of the two
charge states of the SQD n = 0,1:

ρ = P̂ 0ρ0
Q + P̂ 1ρ1

Q. (8)

Here, P̂ n denotes the operator projecting onto the charge state
n = 0,1 of the SQD, that is,

P̂ 0 = |0〉SS〈0| ⊗ 1Q, (9)

P̂ 1 =
∑

σ=↑,↓
|σ 〉SS〈σ | ⊗ 1Q, (10)

where 1Q = ∑
l |l〉QQ〈l| is the qubit unit operator. Next,

expanding each ρn
Q in Eq. (8) in terms of the unit and three

Pauli matrices, we find that the relevant part of the density
operator is parametrized by only eight real expectation values
pn = tr(P̂ nρ) and τn

i = tr(P̂ nτ̂iρ):

ρ = 1
2

∑
n

pnP̂ n + 1
2

∑
n,i

τ n
i (P̂ nτ̂i). (11)

The numbers pn = tr(P̂ nρ) give the probability for the SQD
to be in charge state n = 0 or 1. Probability conservation is
expressed by

p0 + p1 = 1. (12)

Furthermore, τn
i are the averages of the isospin components

i = x, y, and z when the SQD is in charge state n = 0 or
1, respectively. By definition, these charge-projected isospins

sum up to the average of the total isospin

τ 0 + τ 1 = τ . (13)

B. Kinetic equations

The Hamiltonian of the isolated reduced system (qubit plus
SQD with HT = 0) can be expressed in terms of the isospin
operator as

Hred = 1
2� · τ̂ + P̂ 1

(
ε + 1

2λ · τ̂
)
, (14)

where the effective magnetic fields of the qubit mixing � =
�ex and the readout λ = λez are orthogonal. Here, we see the
action of the measurement: the state of the qubit modulates
the effective level position of the SQD between ε ± λ/2. This
affects the energy-dependent tunneling rates between the SQD
and the leads and by this the measurable transport current.

The kinetic equations for the isolated reduced system,
obtained from the von Neumann equation ρ̇ = −i[Hred,ρ],
show that the charge-projected isospins are subject to different,
noncollinear effective magnetic fields � and � + λ:

ṗ0 = ṗ1 = 0, (15)

τ̇ 0 = � × τ 0, (16)

τ̇ 1 = (� + λ) × τ 1. (17)

If the SQD is singly occupied, the capacitive interaction λ thus
exerts a backaction torque, perturbing the free qubit-isospin
precession about �.

We note that the ensuing analysis is, in general, not limited
to charge qubits: For example, in singlet-triplet qubits, two
exchange-coupled electrons in the qubit double quantum
dot form spin-singlet and spin-triplet states, which due to
a different charge distribution also couple capacitively to a
sensor quantum dot (spin-to-charge conversion). However,
the two-electron double quantum dot Hilbert space is four
dimensional instead of two dimensional as for the charge qubit,
which introduces an additional complexity to the problem that
is beyond the scope of this paper. Still, as long as two electrons
stay in the qubit subspace formed by the spin-singlet and the
spin-triplet state T0, the Hamiltonian (14) provides a valid
model for the readout of a singlet-triplet qubit if one included
a z component into �, accounting for the exchange splitting
J between S and T0 (the other two triplet states T+ and T−
are usually energetically split off by a large real magnetic field
B � J ). Note that the exchange interaction J between the
electrons is typically in the order of a few μeV [2], which
can be well below the tunneling rate �. This is a crucial
requirement for our analysis.

When including the tunnel coupling HT of the SQD to the
electronic reservoirs, Eqs. (15)–(17) turn into a set of equations
that couple the occupation probabilities pn of the SQD and the
charge-projected isospins τn (n = 0,1). We derive these from
the kinetic equation for the reduced density operator using
the real-time diagrammatic technique [29,36,37], including all
coefficients of order � as well as �2/T , λ�/T , and ��/T and
neglecting remaining terms of higher order in �, λ, and �. In
addition, we make a Markov approximation. In Appendix A,
we explain how to perform this expansion and justify its
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validity under the conditions λ,� � � � T . Within these approximations, the kinetic equations read as

d

dt

⎛
⎜⎜⎜⎝

p0

p1

τ 0

τ 1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−2�0 +�1 +2C· +C·
+2�0 −�1 −2C· −C·
+2C +C −2�0 + (� − 2β) × �1 − β×
−2C −C +2�0 + 2β× −�1 + (� + λ + β) ×

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

p0

p1

τ 0

τ 1

⎞
⎟⎟⎟⎠ . (18)

When computing the matrix product with the column vector
in the above equation, the dot · (cross ×) in the entries of
the matrix indicates that a three-dimensional scalar (vector)
product is to be formed. The coefficients in Eq. (18) are
�n = ∑

r=s,d �n
r with the renormalized dissipative SQD rates

through junction r = L,R:

�0,1
r = �rf

±
r ±

∑
q=s,d

�r�q

2T
(f +

r )′φq

∓
∑
q=s,d

�r�q

2T
φ′

r (2f +
q + f −

q ), (19)

the vector C = ∑
r Cr with the isospin-to-charge conver-

sion rates

Cr = �r

2T
λ(−f +

r )′, (20)

which are vectors with positive elements, and finally the
vector β = ∑

r βr , giving rise to isospin torque terms, with
the effective magnetic fields

βr = �r

T

(
� + 1

2λ
)
φ′

r . (21)

In Fig. 2, we plot the contribution of a single electrode to
the magnitude of these coefficients as a function of the gate
voltage Vg . In the above expressions f ±

r = f ±[(ε − μr )/T ]
abbreviates the Fermi function for lead r = s,d with f +(x) =
(ex − 1)−1 and f −(x) = 1 − f +(x). The level renormalization
function φr = φ[(ε − μr )/T ] is defined by

φ(x) = P
∫ +�

−�

dy

π

f +(y)

x − y
(22)

FIG. 2. (Color online) Dissipative and coherent coefficients in-
duced by a single electrode for μ = 0 (electrode index suppressed
for simplicity). (a) Dissipative SQD rates �0,1 (19) including the
renormalization of the tunneling (solid lines) and excluding it (dashed
lines) as a function of gate voltage Vg = −ε. Parameters: �/T = 0.2
and D/T = 102. (b) z component of the isospin-to-charge conversion
rate Cz [Eq. (20)], (blue) and the isospin torque βz [Eq. (21)],
(red) as a function of Vg . Since �z = 0, the curve with the scaling
chosen is independent of further parameters. Note that the Cz drops
exponentially in the Coulomb blockade regime, whereas βz decreases
only algebraically.

= −Re ψ

(
1

2
+ i

x

2π

)
+ ln

(
�

2π

)
. (23)

Derivatives are indicated by a dash: φ′ = ∂φ(x)/∂x and
analogously (f +)′ = ∂f +(x)/∂x. In Eq. (22), P denotes the
principal value of the integral with a cutoff � = D/T , yielding
the real part of the digamma function ψ and a logarithmic
correction. The latter depends on the electrode bandwidth
D, which must be set to D ∼ U where U is the large local
Coulomb interaction energy of the SQD (we excluded the
doubly occupied state from the SQD Hilbert space). In this
way, D ∼ U enters into the rates [Eq. (19)], but D drops out in
the derivatives required for the torque terms [Eq. (21)]. Finally,
although we refer to Eq. (19) simply as the “renormalized”
SQD rate, one should note that the O(�2) corrections to the
O(�) rate (first term) includes both renormalization of the
energy level ε (second term) as well as an elastic cotunneling
contribution (third term). Figure 2(a) shows that this leads to
a combined shift and broadening of the resonant step in the
rates around ε ≈ μr (cf. Appendix C). We note that we were
careful to restrict our study to weak couplings � � T . This
clearly validates the neglect of even higher-order corrections.
In particular, we can safely exclude the occurrence of Kondo
physics even for those results we show in the Coulomb
blockade regime.

C. Sum rules

The kinetic equations (18) clearly satisfy the sum rule ṗ0 +
ṗ1 = 0, which expresses the probability conservation (12).
Moreover, we discuss in Appendix D that a second sum
rule exists for the charge-projected isospins: their sum has to
reproduce the internal evolution of the total average isospin,
i.e., as if the tunneling was switched off (HT = 0) (see
also [33]). Their sum is thus given by Eqs. (16) and (17):

τ̇ 0 + τ̇ 1 = τ̇ |int = � × (τ 0 + τ 1) + λ × τ 1. (24)

This constrains the dynamics of the average charge-projected
isospins τ 0 and τ 1, without reducing one to the other (as
happens for p0 and p1). The isospin sum rule is a consequence
of the conservation of the total isospin operator in the
tunneling, that is, [τ̂ ,HT ] = 0 [33]. It holds in the presence
of the reservoirs, order by order in the perturbation expansion
in �. Indeed, we find that our kinetic equations obey Eq. (24),
as do the results in [28]. By contrast, Eqs. 31(a)–31(f)
given in [26] in general violate it, unless one expands to
lowest order in the SQD-qubit coupling λ. In that case,
assuming energy-dependent tunneling rates, they agree with
our kinetic equations if we (i) send the bias to infinity,
implying energy-independent Fermi functions f +

L = f −
R = 1

and f −
L = f +

R = 0 in Eq. (18), (ii) neglect all renormalization
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effects, i.e., the isospin torque and the renormalization of the
tunneling rates, and (iii) ignore factors of two due to the SQD
spin (importance discussed in Sec. IV A).

D. Isospin torques

The kinetic equations (18) together with the probability
conservation p0 + p1 = 1 completely determine the Marko-
vian dynamics of the reduced SQD-qubit system in the
limit1 λ,� � � � T . The dynamics of the occupations and
the isospins are coupled by the charge-to-isospin conversion
vector rates C: in the first line of Eq. (18), they describe
the influence of the qubit state on the occupations, that is,
the measurement action, which modifies the current, whereas
in the second and third lines of Eq. (18), they represent a
backaction of the measurement on the qubit. These dissipative
terms scale as ∼�λ/T , i.e., with the product of both couplings
that are involved in the measurement process.

When keeping the above terms C ∼ �λ/T that describe
the readout action and backaction, we must also keep torque
terms β × τ n induced by the readout since β scales in the same
way (since λ ∼ � or even λ < �) unless prefactors are very
small. These torque terms represent a coherent backaction on
the qubit since it derives from level renormalization effects.
The isospin torque terms have a nontrivial voltage dependence.
At the resonance of the SQD level with the electrochemical
potential μr , ε = −Vg = μr , the effective magnetic field from
lead r vanishes, |βr | = 0. However, it sharply rises to two
extrema at |ε − μr | ≈ 2T , i.e., at the “flanks” of the Coulomb
peaks. Figure 2(b) shows that here |β| ∼ |C|, right at the
crossover regime from single-electron tunneling to Coulomb
blockade where the SQD has the highest readout sensitivity.
Further away from resonance, the dissipative (back)action
terms (C) are exponentially suppressed with |ε − μr |, so that
the torque terms even start to dominate: the field β only decays
algebraically with φ′

r ∼ 1/|ε − μr |. The latter approximation
holds when the bias is the largest energy scale.

It is explicitly stated in Refs. [27,28] that level renormal-
ization contributions are neglected. In the limit of infinite bias
Vb torque effects can be neglected as done in [25,26] because
the magnitude of β scales as |β| ∼ 1/Vb. Thus, our results
agree in this regard with [25,26]. Altogether, it is therefore not
surprising that the coherent backaction has not been noted so
far. However, if the bias Vb is large, but finite, corrections from

1If we set λ = 0 in Eq. (18), the resulting equations for the occupa-
tions and the charge-projected isospins decouple. The equations for
the occupations coincide with those for the U = ∞ Anderson model
up to order �2 (i.e., the SQD without the qubit present). Furthermore,
when integrating out the SQD, we reproduce the dynamics of a freely
evolving qubit: τ̇ = τ̇ 0 + τ 1 = � × τ . Notably, this equation does
not depend on isospin-torque terms which, for nonzero �, still remain
in Eq. (18) for λ = 0. Despite their appearance, these terms thus have
no physical consequence in this limit, as it should be. We furthermore
note that there is no unique stationary state of the joint SQD-qubit
system in both the cases λ = 0 and � = 0. This is expected since in
these cases we completely decouple a subsystem. Finally, we note that
if we formally set � = 0, we recover the free evolution of Eqs. (16)
and (17).

FIG. 3. (Color online) Illustration of coherent processes respon-
sible for the torque terms ∼β in Eq. (18) for � = 0 (for further
explanation, see Sec. III E).

renormalization effect can still be sizable (see also Ref. [38] for
a related discussion). Thus, one should also reckon with renor-
malization effects when suppressing the readout current by
tuning the SQD into Coulomb blockade where the qubit state
is supposed not to be measured (during other processing steps,
e.g., qubit manipulation). Although this nearly eliminates the
dissipative backaction (|C| ≈ 0), the coherent backaction may
still be of appreciable size. Thus, this nontrivial dependence
of the induced torque on the gate (and bias) voltage, illustrated
in Fig. 2(b), presents interesting possibilities that may be used
to control the quantum state of a qubit.

We finally discuss the relaxation rates ∼� + �2/T

[Eq. (19)]: they only contain the tunneling, i.e., they are as-
sociated with the stochastic switching of the detector. Clearly,
when describing the readout for λ � �, one has to consistently
include the renormalization of the tunneling rates ∼�2/T

[second and third terms in Eq. (19)]. To our knowledge,
this has not been pointed out so far (cf. Refs. [25–28]). In
Appendix B, we show that this consistency is mandatory to
obtain physically meaningful results: when failing to account
for the next-to-leading-order terms ∼�2/T , while keeping the
coherent backaction effects (isospin torques), the solution of
the above kinetic equations may severely violate the positivity
of the density matrix (11).

E. Analogy to quantum dot spin valves

The torque terms in Eq. (18) are generated by coherent
fluctuations of electrons tunneling between the SQD and the
leads. A similar coherent effect is well known in spintron-
ics [17,18]: when attaching a quantum dot to ferromagnetic
leads, an imbalance of the tunneling rates for spin-up and
spin-down electrons leads to a different level shift for the
spin-up state and the spin-down state on the quantum dot. The
resulting level splitting shows up as an additional spin torque
proportional to φ(ε) [see Eq. (22)] in the kinetic equations
resembling our qubit isospin equations [17]. In analogy to
this case, here the strength of the virtual fluctuations of the
SQD depends on the position of the electron in the qubit
(see Fig. 3). For the special case � = 0, a simple argument
can be made: if the isospin is up (down), the effective level
position of the qubit is shifted by +λ/2 (−λ/2). This gives
a level splitting ∼φr [ 1

T
(ε + λ

2 )] − φr [ 1
T

(ε − λ
2 )] ≈ λ

T
φ′

r (ε) in
the weak coupling limit and explains why Eq. (21) contains
a derivative of the renormalization function. [The factor 1

2 in
Eq. (21) occurs because the isospin operator is not normalized.]
For nonzero mixing � of the qubit orbitals, the additional
vector ∼�

T
φ′

r (ε) appears in Eq. (21) along a different direction.
This accounts for a renormalization of the qubit splitting.
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These torque terms act on the charge-projected isospins,2

but for the different charge sectors they have opposite
directions [as required by the sum rule (24)] and differ in
strength by a factor of 2 (due to the SQD electron spin):

τ̇ 0 = (� − 2β) × τ 0 − β × τ 1 + . . . , (25)

τ̇ 1 = 2β × τ 0 + (� + λ + β) × τ 1 + . . . . (26)

As in kinetic equations for QD spin valves with nonzero spin
in two adjacent charge states [39], in Eqs. (25) and (26)
we have a spin torque that precesses the isospin (τ̇ 0 ∼
−2β × τ 0 and τ̇ 1 ∼ β × τ 1). However, in contrast to the
spin-valve equations, their sign is opposite for n = 0 and
n = 1. Additionally, there are torque terms that couple the two
isospins of different charge states of the SQD (τ̇ 0 ∼ −β × τ 1

and τ̇ 1 ∼ 2β × τ 0). Those turn out to be crucial as we explain
in the next section.

IV. IMPACT OF COHERENT BACKACTION

A. Readout current

By taking the SQD spin and the strong local interaction U

on the SQD into account, the dissipative rates involving p0

and τ 0 in our kinetic equations (18) differ from Refs. [25–28]
by a factor of 2, as expected.3 A less obvious, but important,
difference arises for the qubit-dependent part of the current
flowing through the SQD, i.e., the difference of the current for
finite coupling (Iλ) and zero coupling (I0):

�I := Iλ − I0. (27)

In the stationary limit (ṗn = 0, τ̇ n = 0) �I may be expressed
as

�I = (
�0

s − �0
d

)(
p0

λ − p0
0

) − 1
2

(
�1

s − �1
d

)(
p1

λ − p1
0

)
− 1

2 (Cs − Cd ) · (
2τ 0

λ + τ 1
λ

)
, (28)

where pn
λ , τ n

λ and pn
0 , τ n

0 are the stationary solutions of Eq. (18)
for finite and zero coupling λ, respectively. Although we will
refer to �I as the “signal current”, Eq. (28) reveals it will
in general not directly measure the position of qubit electron
for two reasons. First, the SQD occupations pn

λ depend on the
isospins through the kinetic equations [see Eq. (18)]: the last
term term in Eq. (28), the one explicitly depending on the τ n

λ,
is not the only contribution to �I . Second, even this latter
term is not directly sensitive to the total isospin τ = τ 0 + τ 1

2These terms in Eq. (18) should not be confused with the mixing
terms in Eqs. (20)–(27) in [27]. The latter equations contain matrix
elements of the reduced density operator with respect to the different
eigenbases of the qubit depending on the charge state of the SQD.
In contrast, τ 0 and τ 1 in Eq. (18) refer both to the same (arbitrary)
quantization axis. The mixing terms of [27] are contained in our
charge-to-isospin conversion terms, which becomes clear when
comparing to Eq. (5.10) in [28], which rewrites the result in [27].

3If the dot is empty, electrons from both spin channels can enter the
dot. This doubles the tunneling rates compared to the case when the
quantum dot is already occupied: then the residing electron can only
leave the dot into a single-spin channel.

FIG. 4. (Color online) (a, main panel) Signal current includ-
ing torque terms (green) and excluding torque terms (blue) and
(b) the ratio of these two currents as a function of gate voltage
Vg . (c) z component of the total isospin τ = τ 0 + τ 1 including
torque terms (green), excluding torque terms (blue), and the z

component of charge-projected isospin τ 1 when we only keep the
term τ̇ 0 = −β × τ 1 in Eq. (18) (dashed red). In (a)–(c), the remaining
parameters are the same: Vb/T = 3, �L/T = �R/T = 10−1, λ/T =
10−2, and D/T = 103.

since τ 0 is weighted with the factor of 2 (due to the SQD-spin
degeneracy) relative to τ 1 in Eq. (28).

We now study the impact of the torque terms β × τ n in
Eq. (18) on the signal current �I . Solving (18) in the stationary
limit and inserting it into Eq. (28) yields, to leading orders of
λ and �,

�Iβ=0 = |C|2
�1

�0 + �1

2�0 + �1

[ |Cs |
|C| − 2�0

s + �1
s

2�0 + �1

]
, (29)

�Iβ �=0

�Iβ=0
= 1 + κ(�0/�1 − �1/�0)

1 − κ/2(1 − �1/�0 + 2�0/�1)
, (30)

with κ = ∑
r (�rφ

′
r/T ). At least to lowest order, Eqs. (29)

and (30) are independent of � [explained below Eq. (32)].
The signal currents (29) and (30) are plotted in Fig. 4(a); let us
first focus on their main features. To this end, we neglect the
change in the occupations of the SQD due to the coupling to
the qubit: setting pn

λ = pn
0 in Eq. (28) we obtain, for symmetric

tunnel couplings,

�I ≈ �λ

4T
[(f +

s )′ − (f +
d )′]

(
2τ 0

z + τ 1
z

)
. (31)

In this case, a nonzero isospin polarization acts as an additional
gate voltage on the SQD and shifts the effective level
position in the SQD to ε + λτz/2 [see Eq. (14)]. The signal
current (28) is then just the linear response of the tunneling
rates �n

r (ε) → �n
r (ε + λτz/2) to that shift. In our case, the

energy dependence of these rates (19) is mostly through the
Fermi functions, which change sharply when the level is
aligned with the electrochemical potentials of source and drain.
This explains the s-shaped curve with a maximum/minimum
roughly expected at Vg ≈ ∓Vb/2, which is in fact slightly
shifted towards the adjacent Coulomb blockade regimes (see
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Fig. 4) since τ z still increases on the threshold to Coulomb
blockade.

The second feature of Fig. 4(a) is the notable asymmetry
of the s-shaped curve: the amplitude of the signal is larger
for positive than for negative gate voltages, which we explain
in the following. To this end, we now first neglect the torque
terms in Eq. (18). The stationary solution of the resulting
equations shows that the charge-projected isospins relax until
they are antiparallel to the effective field in that charge sector
(the reduced system tends to occupy the ground state), that is,

τ 0
β=0 = −c0�, τ 1

β=0 = −c1(� + λ), (32)

with c0,c1 > 0. Clearly, only τ 1
β=0 has a component along

the detection vector λ and it therefore solely determines the
signal in the case of β = 0 by Eq. (31). When the gate voltage
is lowered, the SQD is more likely to be empty and τ 1

β=0 is
suppressed. This is evident from the kinetic equations (18)
since the relaxation rate �1 of τ 1

β=0 rises while the relaxation
rate �0 of τ 0

β=0 becomes smaller when Vg is lowered, thus
transferring a nonzero total isospin to the projection τ 0

β=0

rather than to τ 1
β=0. In conclusion, the signal has the overall

tendency to be decreased with Vg , explaining the asymmetry
of the maximum and minimum magnitudes. Finally, one
understands why the signal is independent of �: the coefficient
c1, relevant for the signal, is determined exclusively by the
relaxation (19) and isospin-to-charge conversion rates (20),
which do not depend on �. This independence of � is
maintained even when torque terms are then included because
corrections to the solution for β = 0 are of higher order in λ

and � and are thus disregarded in Eqs. (29) and (30), except
for those coming from the torque terms along λ.

Comparing the two curves in Fig. 4(a) we note that the
impact of the torque terms on the signal current become
quite significant. Remarkably, the isospin-torque correction
to the signal current may be of the same order as the signal
current itself when entering the Coulomb blockade regime. In
Fig. 4(b), we plot the ratio �Iβ �=0/�Iβ=0, which can achieve
values even as large as 2 for the parameters chosen. The
reason for this may be inferred from Eq. (30): when tuning
away from resonance in either direction, |φ′| and therefore κ

in Eq. (30) quickly reaches a maximum [see Fig. 2(b)] and
simultaneously either �0/�1 or �1/�0 rises [see Fig. 2(a)].
Beyond the maximum, the latter effect dominates, sustaining
a further increase of the ratio �Iβ �=0/�Iβ=0.

To identify which terms in the kinetic equations (18)
are responsible for this correction, we compare in Fig. 4(c)
the z component of the total isospin τ when torque terms are
included with the z component of τ 1 for the case when we
only keep the term τ̇ 0 ∼ −β × τ 1 in Eq. (18). Clearly, this
term is sufficient to reproduce the total isospin polarization
for Vg > 0. The above suggests that the torque-induced
isospin polarization is the result of a two-step mechanism:
first, a charge transition from n = 1 to n = 0 occurs in the
SQD, accompanied by an induced coherent precession with
frequency |β| of the isospin. After that, a dissipative transition
to charge state n = 0 takes place with rate �0. By these
two steps, the isospin τ 1 experiences effectively the effective
magnetic field B0 = � + λ [due to τ̇ 1 ∼ (� + λ) × τ 1] plus
an additional, noncollinear contribution along −β (due to

FIG. 5. (Color online) Differential signal conductance (33) at
finite bias Vb = 3T as a function of gate voltage Vg = −ε. In
all plots, we set D/T = 103. �G is shown both including torque
terms (green) and neglecting them (blue) in (a) and (c) and their
difference δG is shown in (b) and (d). In (a) and (b), we compare
the results for coupling strengths �s/T = �d/T = 10−f and λ/T =
10−2f for symmetric tunnel rates γ = 1, while in (b) and (d) we
change the tunnel couplings asymmetry γ = √

�s/�d while keeping√
�s�d/T = 5 × 10−2 and λ/T = 10−3 fixed. The curves in (a),

(c), and (d) are vertically offset for different parameters with the
�G/δG = 0 line indicated by the gray dotted lines. The axis labels
refer to the lowest curve. Note the units in (a) and (b), which account
for the scaling of the conductance signal �G ∼ λ2�/T 3.

τ̇ 0 ∼ −β × τ 1). We checked that the torque term τ̇ 1 ∼ β × τ 1

in Eq. (18) is not important here by simply leaving it out. Thus,
the total effective field B0 − β is slightly rotated towards +λ

if φ′ > 0 (as for positive Vg , cf. Fig. 2) as compared to B0.
Since τ 1 tends to orient itself antiparallel to these effective
magnetic fields, it acquires a component along −λ, resulting
in a decrease in τz [cf. Fig. 4(c)]. A similar analysis shows
that for negative Vg , the dominant effect comes rather from the
charge-state-conserving torque term τ̇ 0 = β × τ 0 in Eq. (18).

B. Differential readout conductance

We next discuss the differential signal conductance

�G = ∂�I

∂V
, (33)

which is directly measured in experiments [5]. Our findings
are summarized in Fig. 5, which compares4 �G ∼ λ2�/T 3,
plotted as a function of gate voltage when including and

4By Eqs. (29) and (30), the λ dependence of the signal current
comes entirely from �Iβ=0, i.e., �I ∼ λ2�/T 2 due to the first
factor ∼|C|2/�1 in Eq. (29). As a result, �G ∼ λ2�/T 3 since the
conductance changes with the bias on the scale T � �.
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FIG. 6. (Color online) Bias dependence of the torque corrections. The correction δV dip
g , given by Eq. (34), is shown in (a) for different

coupling strengths �s/T = �d/T = √
λ/T = 10−f and in (b) for different asymmetries γ = √

�s/�d . The relative correction R, given by
Eq. (35), is shown in (c) for different couplings and in (d) for different asymmetries, chosen as in (a) and (b), respectively. All definitions and
other parameters are the same as in Figs. 5(a) and 5(b).

excluding the torque terms, as well as their difference,
the torque correction δG = �Gβ �=0 − �Gβ=0 ∼ λ2�/T 3κ ∼
λ2�2/T 4.5 Figures 5(a) and 5(c) corroborate that the rela-
tive impact of the torque terms on the conductance signal
δG/�G ∼ κ becomes larger when κ ∼ �/T is increased. This
is generally expected for renormalization effects. Figure 5(c)
illustrates that an asymmetry of tunnel rates γ =

√
�s/�d > 1

enhances the torque effects as well. This is also expected since
in this case, the SQD is emptied less often than it is filled,
leaving it nearly always singly occupied. Then, the coupled
SQD qubit undergoes long periods of coherent time evolution
and the torque terms can precess the isospin more effectively
than for the opposite asymmetry γ � 1.

In Fig. 6, we systematically investigate the impact on the
two main features of the �G traces of Figs. 5(a) and 5(b),
namely, the position and its magnitude of the large dip at
Vg > 0. We plot the absolute correction due to the isospin
torque to the dip position

δV dip
g = V

dip
g,β �=0 − V

dip
g,β=0, (34)

and a relative correction to its magnitude

R = �G
dip
β �=0 − �G

dip
β=0

�G
dip
β=0

, (35)

5From Eqs. (29) and (30) we obtain δG ∼ �Gβ �=0 − �Gβ=0 ∼
(�Iβ �=0 − �Iβ=0)/T ∼ |C|2/�1κ/T ∼ λ2�/T 3.

as a function of the bias voltage. In Figs. 6(a) and 6(b), we see
δVg > 0 for all biases and parameters, i.e., the dip is shifted
deeper into the Coulomb blockade regime due to the isospin
torque. As expected from the above discussion of Fig. 5, the
correction to the position increases when �/T rises as in
Fig. 6(a) or the asymmetry �s > �d rises as in Fig. 6(b).

In contrast, Fig. 6(c) shows that the qualitative correction
R to the magnitude depends on the parameters: for small bias,
the dip is enhanced (R > 0) by the torque terms, while it
is suppressed (R < 0) in the limit of large bias. Figure 6(d)
shows that this tendency is independent of the asymmetry of
the tunnel couplings. If the source tunneling barrier is more
transparent (�s > �d ), we find a nonmonotonic dependence
with a strong enhancement of the dip close to Vb ∼ 2T that
can reach up to 30% for an asymmetry of �s/�d = 9, a typical
experimental value. In this case, the dip position correction δVg

in Fig. 6(b) is also nonmonotonic. Again, this corroborates the
increased relative importance of the torque terms due to long
waiting times in the SQD.

V. SUMMARY AND OUTLOOK

We have analyzed the backaction of a capacitive readout
of a charge qubit by probing the differential conductance
of a nearby sensor quantum dot (SQD). To this end, we
extended the kinetic equations used previously [25–28] by
including spin, local interaction on the SQD, and, most
importantly, renormalization effects of (i) the level positions
of the coupled SQD-qubit system, generating qubit-isospin
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torques and (ii) the tunneling rates connecting the SQD to
the electrodes. Our study, focused on the ensemble-averaged,
stationary conductance signal, already provides indications
that these renormalization effects are important for such
detection schemes. In particular, at the crossover to Coulomb
blockade (the experimentally relevant regime of highest
detection sensitivity), these effects matter.

The isospin-torque terms ∼β × τ n in the kinetic equa-
tions for the coupled SQD-qubit system induce an addi-
tional precession of charge-projected qubit isospins τ n. This
renormalization effect relies on the response of the SQD
tunneling rate, scaling as ∼�, to perturbations on the internal
energy scales ∼�,λ of the SQD-qubit system. This is exactly
the sensitivity that is also exploited for the readout of the
qubit state. Thus, isospin torques can not be avoided since
they incorporate terms that scale in the same way with these
parameters as the terms responsible for the readout.

We have compared these isospin torque terms with analo-
gous terms due to the spintronic exchange field that is found
in quantum dot spin valves [18,40–42]. In the latter, the
spin-dependent level renormalization that the field represents
is caused by spin-dependent tunneling rates, while the above
qubit-torque terms derive from an isospin-dependent effective
level position of the electron in the SQD that is used in the
readout. A consequence of this difference in the microscopic
origin is that the isospin torque can additionally couple isospins
for different SQD charge states (n = 0,1), e.g., terms such as
τ̇ 1 ∼ β × τ 0 appear, in addition to a precession that preserves
this charge state, i.e., terms of the form τ̇ n ∼ β × τ n. The latter
are the only ones that appear in spintronics. We discussed
that both types of isospin-torque terms are crucial for the
description of the stationary readout.

Furthermore, the renormalization of the SQD detector
tunnel rates (level shifts and cotunneling) is found to be
crucial: without those terms, the positivity of the density
operator can be severely violated, invalidating the approach,
at least in the Markovian limit (see Appendix B). These
corrections, extensively studied in transport through QDs,
have so far received little attention in the context of quantum
measurements and require one to go beyond the standard Born-
Markov approximation plus secular approximation. We have
provided an important, general check on any such extension by
deriving a rigorous sum rule for the charge-projected isospins
that holds order by order in the SQD tunnel coupling �.
This sum rule, recently discussed in a general setting [33],
is imposed by the conservation of the qubit isospin during
tunneling and in fact holds for any qubit-SQD observable that
respects this symmetry.

The basic reason why renormalization effects are important
in weak measurements is a simple one: if an electron on the
detector quantum dot has time to probe the qubit, it also has
time to fluctuate and thereby renormalize system parameters.
For the parameter regime considered here, �,λ � �, standard
Born-Markov approximations, combined with Davies’ secular
approximation, are not applicable, as we have explicitly
verified, and these furthermore violate the above general sum
rule.

The kinetic equations presented here provide a new starting
point for studying the impact of the isospin torque on
the transient dynamics of the qubit Bloch vector and the

measurement dynamics. The measurement-induced isospin
torques lead to a modification of the relaxation and dephasing
rates of the isospin τ = τ 0 + τ 1, which can be found by
solving the kinetic equations (18) time dependently for a given
initial state. Preliminary results indicate that the time for the
exponential decay of the isospin magnitude |τ | to its stationary
value can be significantly altered. However, the study of such
transient effects requires the non-Markovian corrections into
Eq. (18). Here, an interesting question is the possible additional
rotation of the qubit Bloch vector due to the torque terms
during the decay. Thus, the coherent backaction may not only
be a nuisance, but could also be useful for the manipulation
of qubits due to the electric tunability of the isospin torques
that we derived here. More generally, the analogy of charge
readout in quantum information processing with spintronics
of quantum dot devices may be a fruitful one to be explored
further.
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APPENDIX A: REAL-TIME DIAGRAMMATICS

We derive the kinetic equations (18) for the averages
occurring in Eq. (11) by applying the real-time diagrammatic
technique [29,36,37], which we briefly review here to in-
troduce the notation and to give the starting point for the
discussion of the approximations we employ. The real-time
diagrammatic technique starts from the von Neumann equation
for the density operator of the total system

ρ̇tot(t) = −iLρtot(t) − i(LT + LR)ρtot(t), (A1)

with the Liouvillians Lα· = [Hα,·] for α = Q,R,S,T ,I and
L = LQ + LS + LI mediating the free evolution of SQD and
qubit (cf. Sec. II). Here, the dot “·” indicates the operator
on which the superoperator Lα acts. Assuming a factorizable
initial state ρtot(t0) = ρ(t0) ⊗ ρs ⊗ ρd , the idea is to integrate
out the noninteracting leads [cf. discussion below Eq. (5)].
This yields a kinetic equation for the reduced density operator
ρ = trres(ρtot):

ρ̇(t) = −iLρ(t) +
∫ +∞

−∞
dt ′W (t ′)ρ(t − t ′), (A2)

where the kernel W (t ′) incorporates the effect of the leads in
the past [i.e., W (t ′) = 0 for t ′ < 0].

If the solution of Eq. (A2) is found, one can calculate the
time-dependent average of any qubit observable. By contrast,
to compute the average charge current 〈Ir〉 from lead r into
the SQD, one has to additionally calculate a current kernel
WIr

since the current operator Ir = i[HT,Nr ] is a nonlocal
observable. Here, Nr = ∑

k,σ c
†
rkσ crkσ denotes the particle

number operator of lead r . The average current is then given
by

〈Ir〉 = Tr
Q+S

∫ +∞

−∞
dt ′WIr

(t ′)ρ(t − t ′). (A3)
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Our approximations are now as follows:
(1) We first carry out a Markov approximation, i.e., we

consider only changes of the density operator ρ(t − t ′) in
the Schrödinger picture that take place on the time scale on
which W (t ′) decays. We therefore approximate ρ(t − t ′) ≈
ρ(t) and express the kernel by its Laplace transform W (t ′) =

1
2π

∫ +∞+i0
−∞+i0 dz e−izt ′W (z). Inserting this into Eq. (A2) yields

ρ̇(t) = −iLeffρ(t) = [−iL + W (i0)]ρ(t), (A4)

where W (i0) = ∫ ∞
0 dt eiztW (t)|z=i0 is the zero-frequency

component of the kernel. One can prove [29,37] that the
stationary state calculated from Eq. (A4) is the exact stationary
solution of Eq. (A2). Similarly, the stationary current is
obtained from Eq. (A3) by inserting the stationary density
operator and replacing the time-integrated current kernel by
its zero-frequency component.

(2) We next expand the kernel in orders of the tunneling
Liouvillian LT and keep only terms up to O(L4

T ). The
systematic perturbative expansion of the kernels (A2), (A3)
in powers of the tunneling Liouvillian LT is derived in, e.g.,
Refs. [29,37] together with a diagrammatic representation. The
O(L2k

T ) contribution to the kernel schematically reads as

iW (2k) =
∑
contr

∏
γi(−1)N

p

G
p2k

2k

1

i0 + X2k−1 − L

×G
p2k−1
2k−1 . . .

1

i0 + X1 − L
G

p1
1 ; (A5)

see [29] for notation and discussion. To see when higher-order
corrections in LT are important, we divide all bath frequencies
in the integrals by temperature T , that is, we substitute by
dimensionless xi = (ωi − μi)/T . This yields schematically

i
W (2k)

T
= (−1)N

p
∑
contr

(∏
i

�i

T

)
I (2k)

(
L − μ

T

)
, (A6)

I (2k)

(
L − μ

T

)
=

(∏
fi

)
G

p2k

2k

1

i0 + X2k−1−(L−μ2k−1)
T

×G
p2k−1
2k−1 . . . G

p2
2

1

i0 + X1−(L−μ1)
T

G1, (A7)

where fi denotes the Fermi functions. We see that W/T

scales as (�/T )k multiplied with a function whose relevant
energy scales are set by (L − μ)/T , i.e., the distance of the
energy difference of the reduced system to the electrochemical
potentials compared to temperature. If �/T is small, one
can neglect higher-order terms unless I (2) is exponentially
suppressed by the Fermi functions in Coulomb blockade. Then,
at least O[(�/T )2] must be included.

(3) Since we focus here on the limit of small λ,�, we
perform an expansion of W not only in LT , but we also expand
the propagators in Eq. (A7) in the Liouvillian of the qubit
together with its interaction with the SQD LQI := LQ + LI :

1

i0 + xn − (L − μn)/T
≈

(
1 − LQI

T

∂

∂xn

+ . . .

)

× 1

i0 + xn − (LS − μn)/T
(A8)

employing [LQI ,LS] = 0. Truncating this expansion after the
first order in LQI is therefore justified if �,λ � T . To sum
up, our approximations are valid if

λ,�<̃� � T . (A9)

In this case, we will only keep terms in
O(�,�λ/T ,��/T ,�2/T ), but we will neglect remaining
terms of higher orders in �, λ, and �.

APPENDIX B: COTUNNELING AND POSITIVITY

We emphasized in the main part that a consistent treatment
can only account for the readout (back)action terms |Cr | ∼
�λ/T if level renormalization effects |βr | ∼ �λ/T ,��/T

(the isospin-torque terms) are also included. For continuous
measurements λ � �, this in turn requires the inclusion of
the renormalization of the tunneling rates of the SQD ∼�2/T

in Eq. (19) (see also Appendix C) into the kernel W (see
Appendix A). In this Appendix, we show that aside from
the consistency of the perturbation theory, an additional,
compelling reason for this is that an initially valid reduced
density matrix ρ(0) can become severely nonpositive when
subject to the time evolution described by the generalized
master equation (A4), i.e., the dynamical linear map on
density operators generated by −iLeff := −iL + W (i0) is not
positive.6 Equivalently, the solution ρ(t) can only remain
a positive operator for all times t > t0 if we demand that
all eigenvalues of the superoperator Leff have nonpositive
imaginary parts (assuming for simplicity that Leff can be
diagonalized). It is important to address this point, even though
here we are only interested in the long-time limit, i.e., the
stationary solution of Eq. (A2). Non-Markovian corrections
to our approximation Leff = −iL + W (i0) only affect the
transient approach to the stationary state. However, if the
imaginary part of an eigenvalue of Leff crosses zero, the
degeneracy with the stationary state gives rise to an unphysical
stationary state (e.g., negative occupation probabilities) and
our approach breaks down.

The effective Liouvillian is positive up to O(�) only if
the torque terms are neglected. However, this a physically
inconsistent treatment since there is no reason keep terms ∼C
of order �λ/T while neglecting terms ∼β of the same order
(cf. main text, in particular Fig. 2. In Fig. 7(a), we explicitly
illustrate this, plotting the largest imaginary parts of the O(�)
effective Liouvillian as function of the gate voltage at fixed
finite bias, both excluding the torque terms (dashed lines) and
including them (solid lines). The positivity violation starts at
the crossover into the Coulomb blockade regime and then
persists. The violation can be traced to the charge-state mixing
isospin-torque terms [see Eq. (18)].

Figure 7(b) reveals that if contributions O(�2) are con-
sistently included in Leff , no exponentially increasing modes

6Interestingly, positivity of ρ(t) is no issue if the SQD and the qubit
are decoupled: one can recast −iLeff for the isolated SQD given either
up to O(�) or O(�)2 into Lindblad form. This even rigorously proves
complete positivity of the time-evolution superoperator for this case.
On the contrary, the generator −iLeff does not have the Lindblad form
when the coupling is finite.
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FIG. 7. (Color online) Comparison of the first three largest imag-
inary parts b0, b1, and b2 of the eigenvalues of Leff plotted as
a function of gate voltage. The perturbation expansion of the
kernel W in (a) is taken up to O(�) and in (b) up to O(�2).
The eigenvalues are shown both including torque terms ∼β (bold
lines) and neglecting them (dashed lines). The remaining parameters
are Vb/T = 5, �L/T = �R/T = 10−1, �/T = λ/T = 10−2, and
D/T = 103. Notably, the naive O(�) approximation for W , i.e.,
including the torques but not the renormalization of the SQD rates,
inevitably leads to eigensolutions exponentially increasing with time
[cf. Eq. (B2)]. This is due to eigenvalues with positive imaginary
part that appear in (a) for |Vg| � Vb, i.e., when entering the Coulomb
blockade regime. The consistent inclusion of O(�2) terms in (b)
prevents the occurrence of exponentially increasing modes. Only for
large negative gate voltages, slightly positive eigenvalues exist, taking
only a fraction of 1

100 of the value compared to the O(�) case in (a).
We attribute these to a neglect of corrections of even higher orders in
�, λ, and �.

occur well into the Coulomb blockade regime. This is another
indication that O(�2) contributions inevitably must be ac-
counted for when level renormalization effects are considered.
It is interesting to note here that a standard method to enforce
the positivity of the reduced density matrix when deriving
kinetic equations is the secular approximation [31,32]. How-
ever, in Appendix D, we explain that this approximation is not
applicable and moreover does not comply with an exact isospin
sum rule (which expresses a conservation law), whereas our
treatment does.

Finally, for completeness we indicate why the solution of
Eq. (A4) stays positive for all times only if the nonzero eigen-
values have positive imaginary parts, following a reasoning
similar to [43]. We assume that the effective Liouvillian can
be diagonalized:

Leff(i0)• =
∑

i

αiAiT r(Ã†
i •), (B1)

where • denotes the operator that the effective Liouvillian
is applied to. Since we consider the zero-frequency effective
Liouvillian, all eigenvalues xi are either purely imaginary or
they appear in pairs α±

i = ±ai + ibi . The corresponding right
and left eigenoperators A±

i and Ã±
i , respectively, are then

Hermitian in the first case or they come in Hermitian conjugate
pairs in the second case. This property ensures that the solution
of Eq. (A4) stays Hermitian while the probability conservation
follows from the fact that the operators Ai are either traceless
or correspond to eigenvalue with ai = 0 [37]. The right
eigenvector of the zero eigenvalue, assumed to be unique
and labeled by i = 0, is associated with the stationary state,
i.e., A0 = ρ∞ with tr(ρ∞) = 1 and Ã0 = 1 (this follows from
probability conservation). The formal solution of Eq. (A4) thus
reads as

ρ(t) = e−iLeff t ρ(t0)

= ρ∞ +
∑
i > 0
η = ±

e(bi−ηiai )tA
η

i Tr
[
Ã

η

i ρ(t0)
]
. (B2)

Hermiticity and probability conservation guarantee that the
eigenvalues of operator (B2) are real and sum up to 1. However,
this does not exclude negative eigenvalues, in which case the
positivity of ρ(t) is violated. This will happen if at least one
exponentially increasing mode with bi > 0 contributes to (B2)
because ρ(t) is unbounded in that case for t → ∞. Thus, some
of its eigenvalues will also be unbounded and one of those has
to be negative if the sum of all eigenvalues is fixed to 1.

APPENDIX C: RENORMALIZED SET RATES

The renormalized SQD rates [Eq. (19)] may be rewritten as

�0,1
r (ε) = �r

⎛
⎝f ±

r (ε) ± [f +
r (ε)]′

∑
q=s,d

�q

2T
φq(ε)

⎞
⎠

∓
∑
q=s,d

�r�q

2T
φ′

r (ε)[2f +
q (ε) + f −

q (ε)] (C1)

≈ �rf
±
r

⎛
⎝ε +

∑
q=s,d

�q

2T
φq(ε)

⎞
⎠

∓
∑
q=s,d

�r�q

2T
φ′

r (ε)[f +
q (ε) + 1]. (C2)

In the first term, we used f ±
r (ω) = f [±(ω − μr )/T ] and

therefore (f +
r )′ = ±(f ±

r )′, whereas in the second term f +
q +

f −
q = 1. Clearly, the first correction term corresponds to the

change in the tunneling rates by virtual fluctuations that ef-
fectively shift the level position to ε′ = ε + ∑

q

�q

2T
φq(ε). The

dependence of the second term on the level position is typical
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of elastic cotunneling. Even when f +
q (ε) is exponentially small

for ε − μr � T , the term
∑

q

�r�q

2T
φ′

q(ε) ≈ ∑
q

�q�r

2π(ε−μr ) only
decays algebraically. This yields a finite, positive relaxation
rate �1

r for charge state 1, which ensures the positivity of the
density matrix.

APPENDIX D: SUM RULES AND CONSERVATION LAWS

In this Appendix, we derive and generalize the sum rule (24)
for the isospins in the main text. We start by noting that the
total isospin operator τ̂ = ∑

n τ̂ n only acts on the qubit part,
in contrast to the charge-projected ones τ̂ n = P̂ nτ̂ . Exploiting
Eq. (A2), the time evolution of its average τ (t) = T rQ+S τ̂ρ(t)
is given by

τ̇ (t) = Tr
Q

τ̂

∫ ∞

0
dt ′Tr

S
[−iLδ(t ′) + W (t ′)]ρ(t − t ′)

= −i Tr
Q+S

τ̂Lρ(t), (D1)

where the kernel-induced part vanishes because the kernel
satisfies the sum rule TrSW (t ′) = 0 that guarantees probability
conservation [29,37]. This statement holds individually for
contributions to W of each order in �. The right-hand side of
Eq. (D1) now follows from Eqs. (16) and (17) and gives the sum
rule (24) of the main text. In physical terms, it expresses the fact
that the isospin is conserved by the tunneling, i.e., [HT ,τ̂ ] = 0.
Such constraints on kinetic equations have recently been
investigated on a general level in [33], where a generalized
current conservation law is set up. It expresses the idea that
the time evolution of a reduced system observable Â can
only be correctly reproduced by a generalized master equation
if the change in this observable induced by the kernel7 equals
the change induced by the system-environment interaction. For
our formulation of the kinetic equation, this requirement reads
as TrQ+SÂ

∫ ∞
0 dt ′W (t ′)ρ(t − t ′) = −iTr[HT ,Â]ρ tot(t). If we

insert the isospin τ̂ for Â, the right-hand side is zero, which
yields the isospin sum rule if the free qubit evolution is added.
The authors of [33] point out that this is not guaranteed by all
approaches used to derive kinetic equations, in particular when
a secular approximation is employed (cf. Appendix E). Our
sum rule therefore provides an important consistency check,
which is clearly fulfilled by our kinetic equations (18).

To show more generally that real-time diagrammatics
respects internal conservation laws of the reduced system, we
next consider the more general case of any observable Â that is
conserved in the tunneling: [Â,HT ] = 0. The time derivative
of its average reads as

Ȧ(t) = Tr
Q+S

Â

∫ ∞

0
dt ′[−iLδ(t ′) + W (t ′)]ρ(t − t ′)

= −iTr
Q

ALρ(t). (D2)

We emphasize that Eq. (D2) by no means implies that our
model describes a backaction-evading/quantum nondemoli-
tion measurement of A: the statistics of A still changes due to

7The kernel is related to the “generalized dissipator” introduced in
Ref. [33].

the tunneling-induced change in the reduced density matrix.
The operator Â is still subject to the free evolution and it is
therefore not a constant of motion (as a Heisenberg operator),
which would be sufficient for a QND measurement.

The proof of Eq. (D1) is particularly simple because the
electron reservoir only couples to the SQD part HS , while all
the qubit observables only act on HQ of the Hilbert space of
the reduced system Hred = HS ⊗ HQ. Equation (D2) follows
from the general observation that the kernel is a reservoir trace
of a commutator with HT : W• = TrresLT X• = TrR[HT ,X•]
where X is some superoperator expression that is irrelevant
here. Then, the second term in Eq. (D2) vanishes by cyclic
invariance of the total trace:

Tr
Q+S

ÂW (t ′)• = Tr
Q+S

Â Tr
res

[HT ,X•] = Tr
Q+S

Tr
res

[HT ,ÂX•] = 0.

This general structure of the kernel W is most easily seen in
the Nakajima-Zwanzig formulation, equivalent to the real-time
approach used here [30,44]. To recover this structure from
the diagrammatic rules first for the zero-frequency kernel, we
reexpress the contraction function γ2k,j = Trres(J

p2k

2k J
pj

j ) in
Eq. (A5) involving the leftmost vertex with label 2k, shift J

p2k

2k

to its original position next to G
p2k

2k , and sum over the indices
associated with 2k. This restores the tunneling Liouvillian and
Eq. (A6) then schematically reads as

W (2k) ∼ Tr
res

(
LT J

p2k

2k

) 1

i0 + X2k−1 − L
. . .G

p1
1 . (D3)

This proof can be worked out analogously for the kernel
in time representation without a Markov approximation as
it occurs in Eq. (D2) since it has a similar structure with
the propagator denominators replaced by exponentials of the
form e−i(X2k−1−L)�t and integrations over all time differences
(see [45,46]).

APPENDIX E: SECULAR APPROXIMATION
AND SUM RULE

A common procedure to avoid positivity problems arising
when deriving generalized master equations, e.g., from a
Born-Markov approximation [31,32], is to perform a secular
approximation. Here, one decouples the occupations and
secular coherences of the eigenstates (i.e., states with the
same energy) of the reduced system from their nonsecular
coherences (i.e., states with different energies). Following the
procedure described in Ref. [31] and transforming back to
the Schrödinger picture, we obtain the following generalized
master equations:

ṗ0 = −ṗ1, (E1)

ṗ1 = +2�+p0 − �−p1 + C · E1 · τ 1, (E2)

τ̇ 0 = −2�+τ 0 + �−E0 · E1 · τ 1 + � × τ 0, (E3)

τ̇ 1 = +2�+E1 · E0 · τ 0 − �−τ 1 − (E1 · C)(2p0 + p1)

+ (� + λ − E1 · β) × τ 1. (E4)

The above equations are different from our result (18) in
three different respects: First, due to the Born approximation,
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they involve only the leading-order tunneling rates �± =∑
r �rf

±
r (ε). Second, when the charge state of the SQD is

changed, the isospins are projected by En = en(en)T onto the
directions of charge-dependent effective magnetic fields e0 =
�/� and e1 = (� + λ)/

√
�2 + λ2. Thus, the occupations

only couple to τ 1 because e0 and C ∝ λ are orthogonal and
only e1 and C have a finite scalar product. This is a consequence
of the secular approximation, which also suppresses the
tunneling-induced torque terms that couple different charge
states in our equations (18) (although they have a strong
impact, cf. the last two paragraphs in Sec. IV A). Third,
since the Markov approximation in [31] is carried out in the
interaction picture, the effective magnetic fields acting on the
isospin within each charge state are also different.

The stationary solution of the above kinetic equations (E1)–
(E4) is identical to that obtained when we neglect cotunneling
corrections and the tunneling-induced torque terms in our
kinetic equations (18). To understand this, recall that the
stationary charge-dependent isospins τ n are pointing in the
direction of the effective magnetic fields acting in the respec-
tive charge state, i.e., τ n = τnen [cf. Eq. (32) and the related
discussion there]. This can also be found for the stationary
solution of Eqs. (E1)–(E4). Inserting the equivalent statement
τ n = Enτ n into our kinetic equations (18), one can readily
obtain Eqs. (E1)–(E4).8

It has in fact been shown by Davies [47,48] that the
Born-Markov plus a secular approximation become exact
when approaching the limit of zero coupling (here the
tunneling rate �) between “system” (qubit plus SQD) and
“environment” (the leads) for large times t → ∞.9 In the
limit of weak tunnel coupling � � λ,�, we have checked that
the torque-induced corrections to the stationary conductance
become negligible. To approach this limit, we only performed
a leading-order expansion of the kernel in �, but not in λ,

8The Lamb shift term in Eq. (E4) is irrelevant for the stationary
solution of τ 1 because it satisfies e1 × τ 1 = 0.

9In [47], the time is rescaled as τ = g2t where τ is finite and the
coupling g → 0 (cf. remarks in [50]).

� as described in Appendix A. Thus, our results comply
with a Born-Markov plus secular approximation. However, we
consider a completely different situation in this paper, namely,
that of a weak measurement for which the tunnel coupling
� is much larger than the internal energy scales � and λ of
the “system”. Thus, the occupations and the coherences of
the density matrix within one charge state of the SQD do not
decouple and a Born-Markov plus secular approximation is
simply not valid in this parameter regime.

Finally, we mention that Eqs. (E1)–(E4) violate the isospin
sum rule (24): The time derivative of the total isospin reads as
[cf. Eq. (D1)]:

τ̇ 0 + τ̇ 1 = τ̇ |int

+2�+(E1 · E0 − 1) · τ 0

+�−(E0 · E1 − 1) · τ 1

−(E1 · C)(2p0 + p1)

−(E1 · β) × τ 1, (E5)

in the stationary limit, it is trivially fulfilled, but for time-
dependent solutions, this may not be the case. Thus, our
model provides a physically relevant example illustrating the
importance of the findings of [33] to qubit measurements:
The step in the derivation of Eqs. (E1)–(E4) that leads to
a violation of the sum rule (expressing the violation of the
current conservation discussed in [33]) is precisely the secular
approximation. Further studies [49,50] discussing different
systems have also indicated that the secular approximation
can give rise to strong deviations of the solution of the
secular-approximated equations compared to that obtained
by more accurate approximations. This does not contradict
the results [47,48] as the proof only considers the large-
time limit. To sum up, care has to be taken when the
secular approximation is invoked; it may capture the physics
incorrectly.
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