000171954 001__ 171954
000171954 005__ 20240625095038.0
000171954 0247_ $$2doi$$a10.1103/PhysRevX.4.021019
000171954 0247_ $$2Handle$$a2128/8050
000171954 0247_ $$2WOS$$aWOS:000336121400001
000171954 0247_ $$2altmetric$$aaltmetric:2322280
000171954 037__ $$aFZJ-2014-05508
000171954 082__ $$a530
000171954 1001_ $$0P:(DE-HGF)0$$aViola, G.$$b0$$eCorresponding Author
000171954 245__ $$aHall Effect Gyrators and Circulators
000171954 260__ $$aCollege Park, Md.$$bAPS$$c2014
000171954 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s171954
000171954 3367_ $$2DataCite$$aOutput Types/Journal article
000171954 3367_ $$00$$2EndNote$$aJournal Article
000171954 3367_ $$2BibTeX$$aARTICLE
000171954 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000171954 3367_ $$2DRIVER$$aarticle
000171954 500__ $$a Erratum Phys. Rev. X 4, 039902 (2014)
000171954 520__ $$aThe electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.
000171954 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000171954 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1$$ufzj
000171954 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.4.021019$$p021019$$tPhysical review / X$$v4$$x2160-3308$$y2014
000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.pdf$$yOpenAccess
000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000171954 909CO $$ooai:juser.fz-juelich.de:171954$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000171954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000171954 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000171954 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000171954 9141_ $$y2014
000171954 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000171954 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000171954 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000171954 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000171954 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000171954 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000171954 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000171954 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000171954 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000171954 920__ $$lyes
000171954 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000171954 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000171954 980__ $$ajournal
000171954 980__ $$aVDB
000171954 980__ $$aUNRESTRICTED
000171954 980__ $$aFullTexts
000171954 980__ $$aI:(DE-Juel1)PGI-2-20110106
000171954 980__ $$aI:(DE-Juel1)IAS-3-20090406
000171954 9801_ $$aFullTexts
000171954 981__ $$aI:(DE-Juel1)IAS-3-20090406