000171954 001__ 171954 000171954 005__ 20240625095038.0 000171954 0247_ $$2doi$$a10.1103/PhysRevX.4.021019 000171954 0247_ $$2Handle$$a2128/8050 000171954 0247_ $$2WOS$$aWOS:000336121400001 000171954 0247_ $$2altmetric$$aaltmetric:2322280 000171954 037__ $$aFZJ-2014-05508 000171954 082__ $$a530 000171954 1001_ $$0P:(DE-HGF)0$$aViola, G.$$b0$$eCorresponding Author 000171954 245__ $$aHall Effect Gyrators and Circulators 000171954 260__ $$aCollege Park, Md.$$bAPS$$c2014 000171954 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s171954 000171954 3367_ $$2DataCite$$aOutput Types/Journal article 000171954 3367_ $$00$$2EndNote$$aJournal Article 000171954 3367_ $$2BibTeX$$aARTICLE 000171954 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000171954 3367_ $$2DRIVER$$aarticle 000171954 500__ $$a Erratum Phys. Rev. X 4, 039902 (2014) 000171954 520__ $$aThe electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed. 000171954 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0 000171954 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David$$b1$$ufzj 000171954 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.4.021019$$p021019$$tPhysical review / X$$v4$$x2160-3308$$y2014 000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.pdf$$yOpenAccess 000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000171954 8564_ $$uhttps://juser.fz-juelich.de/record/171954/files/FZJ-2014-05508.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000171954 909CO $$ooai:juser.fz-juelich.de:171954$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000171954 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000171954 9132_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0 000171954 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0 000171954 9141_ $$y2014 000171954 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0 000171954 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000171954 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000171954 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5 000171954 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000171954 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000171954 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000171954 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000171954 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000171954 920__ $$lyes 000171954 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0 000171954 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1 000171954 980__ $$ajournal 000171954 980__ $$aVDB 000171954 980__ $$aUNRESTRICTED 000171954 980__ $$aFullTexts 000171954 980__ $$aI:(DE-Juel1)PGI-2-20110106 000171954 980__ $$aI:(DE-Juel1)IAS-3-20090406 000171954 9801_ $$aFullTexts 000171954 981__ $$aI:(DE-Juel1)IAS-3-20090406