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The electronic circulator and its close relative the gyrator are invaluable tools for noise management and
signal routing in the current generation of low-temperature microwave systems for the implementation of
new quantum technologies. The current implementation of these devices using the Faraday effect is
satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength
employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired
device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar,
explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such
a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We
formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this
classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we
find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior,
with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band
gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or
graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.
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Quantum Information

I. INTRODUCTION

The Faraday-effect circulator is an unsung workhorse
of the contemporary surge of low-temperature micro-
wave device physics, playing a key role in permitting
low noise control and measurement of superconducting
qubits and resonators. The essence of the three-port
circulator is its nonreciprocal routing of signals: electro-
magnetic radiation is passed cyclically from one port to
its neighbor—radiation in at port one goes out at port
two, in at two goes out at three, and in at three goes out
at one; see Fig. 1. The S matrix describing the circulator
is simply [1]

S ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA: (1)

Here and later, the S matrix relates the incoming
amplitudes of electromagnetic waves to the outgoing
amplitudes. We are not referring to the quantum S matrix
for electronic wave function amplitudes.
Figure 2 shows a circulator in place in a contemporary

qubit experiment [4]. A typical present-day experiment
involving just a single superconducting qubit requires no
fewer than four circulators [5] for the proper management
of signals used to do high-fidelity, rapid measurements on
the qubit. (Recently, a three-qubit experiment was reported
[6] with no fewer than eleven circulators.) While highly
reliable and reasonably close to ideal in their designed
frequency band of operation, they are quite bulky. The few-
centimeter linear dimension of a circulator operating in the
few-gigahertz frequency range is explained very simply:
the Faraday effect causes circulation by a wave-interference
phenomenon [1], requiring a physical scale on the order
of the wavelength. Naive scaling of experiments to, say,
hundreds of qubits would require an impractically large
volume of low-temperature space devoted to circulators.
A primary objective of the present work is to identify a new
physical basis for the circulator that permits very significant
miniaturization.
How to achieve miniaturatization of the circulator

function to far below wavelength scale using operational
amplifier circuits [7] is well known. But even if such
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electronic circuits could work at cryogenic temperatures,
their power dissipation and noise performance would be
unacceptable for current applications. Very compact gyra-
tors may be achievable with SQUID structures, according
to a preliminary study [8]. Another form of active gyrator
that is workable at low temperature is currently considered
in the area of parametric Josephson devices [9]; while these
are integrated-circuit devices [10], their employment of
resonator structures [11–14] means that their compactness
is not guaranteed. These schemes seem to be related to
theoretical ideas from long ago for realizing nonreciprocal
devices with parametrically modulated linear components
[15–17]; these theories were apparently never put into
practice (see also Ref. [2], p. 30).
Several devices are straightforward derivatives of the

circulator, which deserve consideration in their own right.
If one of the ports of the circulator is terminated in a
matched load, that is, with a resistance Z0 equal to the wave
or source impedance chosen for signal propagation in the
system (often 50 or 100 Ω, this is just the ratio of the guided
wave’s voltage to its current), one obtains the isolator, in
which signals are perfectly transmitted in one direction
between the remaining ports and perfectly absorbed in the
other direction. In a recent experiment [5], three of the four
circulators are configured as isolators, serving the function
of blocking noisy (high-temperature) radiation from enter-
ing the low-temperature part of the experiment. If one port
is unterminated, the resulting device is uninteresting: the
reverse-direction signal undergoes reflection at the open
port and is transmitted identically to transmission in the
other direction—both forward- and reverse-propagating
signals are transmitted without modification. If one

circulator port is terminated in a short circuit, the resulting
highly nontrivial two-port device is known as a gyrator. It is
a maximally nonreciprocal device in its effect on the phase
of signals. Forward-directed signals acquire no phase shift,
while back-propagating signals are inverted, being phase
shifted by π, coming from the phase-inverting reflection at
the short-circuit termination. This is indicated in the
conventional symbol for the gyrator [Fig. 3(a)].
The gyrator is arguably more fundamental than the

circulator, and is the main focus of study in this paper.
Historically, the gyrator predates the circulator and was
responsible for its discovery. There are two distinct
methods, to be reviewed below, for obtaining circulator
action using a gyrator. Before introducing these, we first
summarize a few of the basic points about the mathematical
description of the gyrator [1,2]. The scattering matrix of the
ideal gyrator is [1]

S ¼
�
0 −1
1 0

�
: (2)

The impedance and admittance matrices of the “matched”
gyrator, for which the internal impedance and the source
impedance both equal Z0, are given by the standard matrix
formulas [1]

FIG. 2. A standard Faraday circulator mounted in a low-
temperature experiment. The circulator, with its enclosing mag-
netic shield, is contained in the rectangular steel-colored box
(dimensions 6 × 6 × 3 cm3). This circulator is designed for an
operating frequency of 400 MHz, those in use for GHz-band
experiments are somewhat more compact. Another interesting
view of microwave circulators in action in a multiqubit experi-
ment can be found in Ref. [3]. In the present paper, we propose a
scheme for achieving a passive circulator with a physical scale
10–100 times smaller. As in the present-day circulator, significant
magnetic fields (perhaps approaching tesla scale) will be re-
quired. This will require a shield structure as in the device shown,
but again proportionally smaller.

FIG. 1. The conventional symbol for the three-port circulator [1],
indicating counterclockwise circulation (1 → 2 → 3). We adopt an
older variant of the notation [2] in which the ports are depicted as
terminal pairs, emphasizing that the input signal to a port can be
characterized by the voltage difference between two discrete nodes.
The terminalpair of aportwill alwayshaveaprimedandanunprimed
label.While theprimed terminal canoftenbe indicatedas“ground,” it
is not necessarily the case that there is a dc connection between the
primed terminals inside thedevice.Theport conditionon the currents
is that thecurrent into theunprimed terminal is equal to thecurrent out
of the corresponding primed terminal.
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Z ¼ Z0ðI þ SÞðI − SÞ−1 ¼ Z0

�
0 −1
1 0

�
; (3)

Y ¼ Z−1 ¼ −
1

Z0

�
0 −1
1 0

�
: (4)

Port impedances or admittances become especially useful
quantities in the “near-field” or “lumped-device” limit,
when the device dimensions are much smaller than the
wavelength of interest [1]. This is not particularly true of
the present-day Faraday devices, but will be true for the
devices we analyze here. In this near-field setting, it is
always possible to identify four nodes (a pair for each port
of the device) at which to define the port currents and
voltages that are related by the impedance or admittance
matrices.
This lumped-device point of view is embodied in the

other standard symbol for the gyrator shown in Fig. 3(b).
This symbol, and the current-voltage relations shown, were
introduced in the seminal paper of Tellegen [18] reporting
his invention of the gyrator concept. Tellegen had realized
[19] that the lumped-element model of electric circuits
was incapable of describing nonreciprocal behavior, which
could readily arise in general electromagnetic theory. He
surmised that the gyrator is a minimal addition to linear
network theory to make it complete, i.e., to describe any
arbitrary electromagnetic linear response. Subsequent work
proved this surmise to be correct [2]. Tellegen noted that the
gyrator is a legitimate passive circuit element, neither
storing nor dissipating energy. He was hopeful [18–20]
that a physical implementation of this device would be
possible. A partial realization of his gyrator was achieved
in subsequent investigations of the magnetoelectric effect
[21]. However, considering that the ideal gyrator, as he
defined it, has the response Eq. (3) for all frequencies, this
realization must necessarily involve some approximation.
One clear strategy for approximate realization is to obtain

the gyrator characteristic over a limited band of frequencies.
This is what was accomplished, a few years after Tellegen’s
initial theoretical proposal, by Hogan [23]. His invention

uses the nonreciprocal rotation of the polarization of quasi-
free-space propagating microwaves, arising from the
Faraday effect occurring in magnetized ferrite materials
(see also Ref. [22]). A functioning gyrator was constructed
that accurately approximated the ideal gyrator response in a
band around a few GHz. Hogan noted that by placing the
gyrator in a interferometer structure—in optics language it is
a Mach-Zehnder-type interferometer—“circulation” could
be achieved (Fig. 4). It was immediately recognized that this
circulator would have many direct applications. Subsequent
refinement of the structure, with a simplification and
symmetrization of the interferometer structure, was rapidly
achieved, and theFaradaycirculator hadachievedessentially
its modern form by around 1960 [24].
In his original work, Tellegen [18,19] envisioned real-

izations involving nonreciprocal [25] electric or magnetic
polarizations (see Ref. [21]). He did not envision a
realization based on nonreciprocal electrical conduction,
but effort was quickly made by other workers to employ
this nonreciprocity—the Hall effect—to realize a gyrator.
We describe this effort in Sec. II, which, unlike the
realization based on the Faraday effect, ended with an
apparently definitive failure. In the present work, we
reexamine this failure, showing that there is an alternative
approach to Hall effect gyration that is, in fact, successful.
It should actually be superior to the Faraday gyrator in
several respects, most notably, that it should permit much,
much greater miniaturization of the gyrator, and, therefore,
of the corresponding circulator.
The remainder of this paper proceeds as follows: Sec. II

reviews the previous construction and analysis of the
resistive gyrator. We make the case in Sec. III for why a
reactive-coupling approach has the prospect for making a
fundamentally better Hall gyrator. The specific case of
the capacitively coupled gyrator is taken up in Sec. IV.
The extremal case of 90° Hall angle leads to tremendous
simplifications as discussed in Sec. IVA. Our analysis is

FIG. 3. The gyrator, a two-port nonreciprocal device. (a) The
“quasioptical” conventional symbol [1], emphasizing that the
gyrator imparts a phase inversion to signals propagating in one
direction only. (b) The lumped-element four-terminal symbol
of the gyrator. According to Tellegen’s definition [18], the
port currents and voltages satisfy the equations V2 ¼ ZI1,
V1 ¼ −ZI2. Z is the gyration resistance.

FIG. 4. Hogan’s interferometric implementation [22,23] of the
three-port circulator using one gyrator, using quasioptical
nomenclature. One of the beams emerging from the Mach-
Zehnder interferometer is reflected back into the structure with
a mirror. In Hogan’s original discovery, magic tees are employed
rather than half-silvered mirrors (in microwave parlance, these are
directional couplers).
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applied to a two-terminal device in Sec. IV B and to the
four-terminal device in Sec. IV C, with the latter giving
good gyrator characteristics. The response of this device
is significantly different if the capacitive contacts are
smoothed, as analyzed in Sec. IV D. Three-terminal devices
can also lead directly to a circulator, as analyzed in
Secs. IV E and IV F. The dual approach of inductive
coupling is analyzed in Sec. V, where scaling arguments
are given, indicating why the capacitive approach is to be
favored. A discussion of how the current ideas might be put
into practice in current experimental graphene-sandwich
structures is given in Sec. VI. Section VII gives conclu-
sions, with some observations on the new problems posed
for the quantum theory by the present device concepts.

II. GERMANIUM GYRATOR

At the same time as Hogan’s work on the Faraday
gyrator, another group of researchers (also at the Bell
Telephone research laboratories) took up experiments to
realize gyration using the Hall effect, and a set of results
was reported employing doped germanium, motivated by
the basic strategy that a low carrier density metal will
exhibit a large Hall effect [26].
Let us summarize the basic approach, followingRef. [27].

A crystal is connected Ohmically to four contacts; see
Fig. 5. The material is three dimensional but thin (the
two-dimensional electron gas had not been discovered in
1953), thin enough that the conduction can be described two
dimensionally; it is assumed that there is a uniformmagnetic
fieldH perpendicular to the thin conductor. Contacts 1 and10
(see Fig. 5), the “current leads” in modern parlance, define
one port of the gyrator, and contacts 2 and 20—the “voltage
leads”—define the second port.
We consider the action of this device within the classical,

Ohm-Hall framework. Here, we follow the contemporary
theoretical analysis of Wick [28], which gave an excellent
accounting of the experiments performed at that time on the
germanium gyrator [27]. The four contacts are equipoten-
tials with (possibly time-dependent) potentials V1, V10 , V2,
and V20 . It is assumed that there are no accumulations
of charge inside the conductor, and that the time dynamics
is quasistatic, so that the potential satisfies the two-
dimensional Laplace equation

∇2Vðx; yÞ ¼ 0: (5)

The contacts then define “Dirichlet” boundary conditions.
The boundary conditions away from the contacts must be
established by a consideration of the conduction process.
The Ohm-Hall formulation of linear electric conduction in
a magnetic field is the spatially local law

− ~∇V ¼ ~E ¼ ρ~j − RH
~j × ~H: (6)

The standard approximate formula for the Hall coefficient
RH ¼ 1=ðenÞ shows why a large Hall effect is expected in a
material, such as doped germanium, with a small value of
the carrier density n.
According to Eq. (6), the electric field ~E and the current

density ~j are not collinear, but have a fixed angle between
them, the Hall angle θH:

θH ¼ tan−1
HRH

ρ
: (7)

Inverting Eq. (6) and writing in componentwise form gives
the matrix equation

�
jx
jy

�
¼ σ

�
cos θH sin θH

− sin θH cos θH

��
Ex

Ey

�

¼
�
σxx σxy

σyx σyy

��
Ex

Ey

�
;

σ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðHRHÞ2

p : (8)

This equation defines the components of the conductivity
tensor σij.
With this in hand, we can state the remaining boundary

condition. Away from the contacts on the boundary, no
currents should flow in and out of the conductor; that is,

n̂ · ~jð~rÞ ¼ 0; ~r ∈ S: (9)

Here, n̂ is the normal vector to the boundary surface S.
For an Ohmic conductor without a Hall effect, Eq. (9)
would lead to “Neumann” (normal derivative) boundary
conditions. However, due to the noncollinear relationship
between ∇V and j, Eqs. (8) and (9) imply the rotated
derivative boundary condition

FIG. 5. A Hall-bar geometry with four Ohmic contacts, with a
uniform magnetic field H pointing in the z direction producing a
Hall effect in the electric conduction equation (6) for the material.
Experiments on a thin, three-dimensional doped germanium
crystal were reported in 1953 [27], which attempted to realize
the gyrator (four-terminal labeling corresponding to Fig. 3), with
a signal field Ex exciting a Hall current Jy. Intrinsic inhomoge-
neities in the field distribution cause this device to have high
losses, preventing it from successfully approximating the ideal
gyrator. For large Hall angle, the losses become concentrated at
“hot spots” at the points R and R0 indicated.
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n̂H ·∇V ¼ 0; (10)

or more explicitly,

cos θH
∂V
∂n þ sin θH

∂V
∂s ¼ 0: (11)

In other words, this condition relates the normal derivative
of V to its tangential derivative (i.e., along the boundary
coordinate s, see also Fig. 7) in proportions determined
by the Hall angle. n̂H is the normal unit vector rotated by
(minus) the Hall angle.
Wick [28] gave a very general solution to this problem,

for a 2D conductor of arbitrary polygonal shape, using
conformal mapping techniques; his analysis was used
repeatedly in subsequent studies of such problems [29],
up to the present [30,31]. His key observation, for the
present purposes, is that gyration can only be poorly
approximated by this device. He establishes his “no-go”
result with a simple argument that shows that if I2 ¼ I20 ¼ 0
(i.e., no total current flowing through leads 2 and 20), the
potentials V2 and V20 cannot lie outside the range between
V1 and V10 . This permits him to prove that there must be
an input resistance R at both input ports, at least as large as
the gyration resistance. Thus, the best approximation to a
gyrator that can be achieved with the “resistive gyrator” is
as shown in Fig. 6. Wick takes pains to point out that this
result is independent of the sample shape, and is also true
“in the limit of infinite magnetic field.” By this, he means
the limit θH → π=2, with σ being finite, or, in other words,

σxy ¼ −σyx; σxx ¼ σyy ¼ 0: (12)

θH ¼ π=2 is the extremal case, since θH > π=2 would
violate the second law of thermodynamics.
While further research went on to attempt to establish

useful applications for the Hall gyrator [32–36], Wick’s
result indicated a fatal flaw in this approach for most
purposes. A few investigators considered the replacement
of the ordinary Ohmic contact with, for example, muti-
contact terminals with the insertion of reactive elements
[37–40], to reduce resistive loss (somewhat presaging the
message of the present paper). But overall, it seems that

the message of Wick’s work was so well understood in
the community that, when the quantum Hall regime [in
which the conditions Eq. (12) are satisfied] was actually
observed 25 years later, it was understood without question
that a two-terminal contact resistance would be present
[29,41–43], despite the “dissipationless” nature of the
quantum Hall state. Büttiker subsequently gave a satisfac-
tory treatment of this input resistance in the quantum theory
[44]. The only further contemporary effort along this
direction of which we are aware is the intriguing proposal
of Chklovskii and Halperin [45] for a step-up transformer
implemented in a multiply connected Hall-bar geometry;
this proposal, in fact, (unwittingly) involves the cascade
connection of two of the old resistive gyrators, using the
transformer equivalence first noted in Tellegen’s original
work [18]. In such a transformer application, the losses
identified by Wick need not be a serious limitation.
While today we tend to view the θH → π=2 limit as

profoundly quantum mechanical, in fact, many details of
the transport phenomenology are well captured by the
Ohm-Hall classical theory in this limit. Its treatment of
boundaries can indeed be questioned; with the Hall
boundary conditions, a normal electric field is generally
present on the insulating walls, implying a boundary layer
of electric charge. But two-dimensional electrostatics does
not permit a localized line of charge in such a geometry;
there is always a long-range tail of charge density into the
bulk. But this difficulty was examined in detail within
the quantum treatment; MacDonald et al. [46] found that
this boundary charge smearing in fact leads only to small
quantitative errors compared with the line-charge model.
Despite all potential difficulties, the classical theory has,
indeed, been extremely successful in giving detailed,
quantitative predictions of transport behavior in suspended
graphene Hall bars [47].
The quantum and classical models are even in agreement

on the question of where the two-terminal dissipation
occurs in the quantum Hall state. Although Wick’s argu-
ment is clearly correct, it, nevertheless, may be viewed as
paradoxical that the classical model is capable of describing
any dissipation in the θH → π=2 limit. After all, classically
dissipation can be accounted for by integrating the Joule
power density; using Eqs. (6) and (8),

Pdiss ¼
Z
A

~E · ~jdxdy ¼ σ cos θH

Z
A
j ~∇Vj2dxdy: (13)

Since cos θH ¼ 0, there is “obviously” no dissipation
possible. This argument is wrong because the fields do
not have finite limiting behavior as θH → π=2. As reviewed
clearly by Rendell and Girvin [29], the fields become
divergent at the ends of the Ohmic contacts, on either the
left or right sides according to the direction of the magnetic
field (R and R0 points in Fig. 5 for the orientation of H in
the figure), depending on the sign of θH, as jθHj → π=2.

FIG. 6. A circuit representation of the response that is achiev-
able using the Ohmically contacted Hall bar of Fig. 5. The lossy
(diagonal) part of the impedance matrix R fundamentally cannot
be smaller than the antisymmetric lossless gyration resistance Z.
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The fields are well behaved elsewhere; thus, the argument
of Eq. (13) is almost right: Joule heating goes to zero
everywhere, except for “hot spots” (becoming Dirac delta
functions, in fact) at the R and R0 points. This hot spot
behavior is observed experimentally [41,48], and also has a
simple interpretation in a quantum treatment [44], where
the dissipation is ascribed to a sudden change of the local
chemical potential as the quantum edge states enter the lead
reservoirs.

III. REACTIVE COUPLING APPROACH

This last observation has directed the approach that we
report in this paper, which analyzes alternative device
schemes that will achieve gyration in the “quantum”
Hall limit θH → π=2 without accompanying two-terminal
resistance. We confine ourselves to classical reasoning: we
argue above that the classical Ohm-Hall picture is remark-
ably successful in explaining the phenomenology of Hall-
device conduction, and we find it an economical and
insightful tool for searching for new schemes. Quantum
analyzes of these schemes will certainly lead to further
insights, but we will not undertake them here.
Since we see that the culprit preventing Pdiss in Eq. (13)

from being zero is a singularity arising from the incompat-
ibility of the Ohmic and insulating boundary conditions,
we can investigate contactless, or reactive, means of con-
tacting the Hall conductor. We find both an inductive and a
capacitive scheme in which the new boundary conditions
avoid dangerous boundary singularities as θH → π=2. The
fields have finite limits everywhere, and the argument given
above applies: as cos θH → 0, Pdiss goes to zero—the
“quantum” Hall state indeed gives a dissipationless device.
A pure gyrator is not directly achieved, but with proper
choice of design, excellent approximations to gyration
should be achievable in convenient frequency regions,
and with physical device dimensions far smaller than for
the corresponding Faraday gyrator.
While both the inductive and capacitive schemes have

appealing features, we believe that the capacitive coupling
scheme has the greatest potential for being realized
experimentally, and has the greatest potential of miniaturi-
zation thus, we explore this scheme in great detail in the
following.

IV. CAPACITIVELY COUPLED
HALL EFFECT GYRATOR

We now state a new boundary condition that is appro-
priate for the case of a segment of boundary of a Hall
conductor forming one side of a capacitive coupling as
shown in Fig. 7. Such a capacitor will be characterized by
having a capacitance per unit perimeter length cðsÞ. While
at this point in our discussion cðsÞ should be viewed purely
as a phenomenological capacitance function, it will be
important for the physical discussion given in Sec. VI that

this function incorporates the full electrochemical capaci-
tance of the Hall material, including the quantum capaci-
tance [49]. Writing cðsÞ as a function of the perimeter
coordinate s allows the possibility that the capacitor has
smoothly variable strength around the perimeter. We will
see that piecewise constant capacitances are completely
reasonable, in the sense that step changes in capacitance do
not lead to any singular behavior of the fields, unlike for the
case of the abrupt ending of Ohmic contacts.
We consider the external capacitor electrode to be a good

conductor, and thus all at a same potential V̄. If at point s on
the perimeter the potential at the edge of the Hall conductor
is VðsÞ, then the displacement current density jDðsÞ at that
point of the capacitor, equal to the current density inside the
Hall material directed normal to the edge n̂ · ~jðsÞ, is given
by the ordinary capacitance equation

n̂ · ~jðs; tÞ ¼ jDðs; tÞ ¼ cðsÞ d
dt

½V̄ðtÞ − Vðs; tÞ�: (14)

The static case is uninteresting, and we have made all
quantities explicit functions of time t. Following Eqs. (9)
and (10), the normal current is proportional to the rotated
projection of the field gradient:

n̂ · ~jðs; tÞ ¼ −σn̂H ·∇Vðs; tÞ ¼ cðsÞ d
dt

½V̄ðtÞ − Vðs; tÞ�:
(15)

We may write this equation in the frequency domain, giving
our final boundary-condition equation:

−σn̂H ·∇Vðs;ωÞ ¼ iωcðsÞ½V̄ðωÞ − Vðs;ωÞ�: (16)

While this is a perfectly well-posed mixed, inhomogeneous
boundary condition for the Lapace equation, we are not

FIG. 7. Arrangement for four-terminal capacitive coupling to a
2D Hall conductor. The coordinate measured along the perimeter
is labeled s, the origin of this coordinate is labeled O, ending at
the same point at perimeter length P. Terminal segments T are in
capacitive contact with external electrodes at ac potentials V̄. The
left and right L=R end points of the T segments are labeled. T
segments are separated by uncontacted insulating segments U.
For the Hall angle θH ¼ π=2, the response of this device is
independent of the shape of the perimeter of the structure.
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aware that it has been previously examined. It is applicable
around the entire boundary, as the regular insulating
boundary condition for the Hall conductor [Eqs. (10)
and (11) above] corresponds to a region of boundary with
cðsÞ ¼ 0. Ohmic boundary conditions are in some sense
treated by taking cðsÞ → ∞, but this case will not come up
in the following, and by keeping cðsÞ finite, we avoid the
singular behavior of the fields discussed above. Note that
our boundary condition [Eq. (16)] is complex valued. This
has the normal interpretation for ac electrical problems: the
real part of the field is the in-phase response and the
imaginary part of the field is the out-of-phase or quadra-
ture response; that is, when driven with a field at frequ-
ency ω, the temporal response is Re½Vðr;ωÞ� cosωtþ
Im½Vðr;ωÞ� sinωt. While we apply these boundary con-
ditions for ω up to microwave frequencies, we consider
only cases where the device dimensions are much smaller
than the wavelength of radiation at these frequencies; in this
near-field limit, the quasistatic analysis of the bulk con-
duction as determined by the Laplace equation [Eq. (5)]
still applies.
The boundary conditions for the Ohmic and capacitive

contacts [Eqs. (10), (11), and (16)] have different behavior
under conformal transformation. The Ohmic case is con-
formally invariant since it only fixes the direction of ~E
with respect to the boundaries. Instead, Eq. (16) is a
condition on the values of ~E along a direction; hence, it
is not conformally invariant. Therefore, the conformal
mapping methods [28,30,50] cannot easily be applied to
the electrostatic problem in our case; however, as we show
shortly, we can calculate all device quantities of interest
(analytically for θH ¼ 90°) without resorting to conformal
mapping techniques.
The problem of finding the two-port response, e.g., the

admittance matrix Y (or Z or S), is now straightforwardly
posed: given a geometry as in Fig. 7, we identify four
terminal segments T1;10 and T2;20 and four uncontacted,
insulating segmentsU1;10 andU2;20 . There is no capacitance
in the U regions. cðsÞ will be nonzero along the T
segments; we will analyze both the case of constant capaci-
tance per unit length and the case where the capacitance
goes smoothly to zero at the ends of these segments.
Smoothingwill cause significant differences in the response,
but this difference does not modify the main features in the
relevant frequency range. The ac terminal potentials
V̄i¼1;10;2;20 will, as stated above, be taken as constants
(possibly complex) in each of the terminal segments
Ti. Solving the field problem as a function of ω gives
normal boundary currents n̂ · ~jðs;ωÞ ¼ −σn̂H ·∇Vðs;ωÞ;
integrating gives the terminal currents

IiðωÞ ¼
Z
Ti

n̂ · ~jðs;ωÞds ¼ −σ
Z
Ti

n̂H · ∇Vðs;ωÞds:
(17)

These terminal currents are linear functions of the terminal
potentials:

IiðωÞ ¼
X

j¼1;10;2;20
yijV̄jðωÞ: (18)

The coefficients in this equation are admittances, but one
further calculation is needed to obtain the two-port admit-
tancematrixY from them.Wemust enforce thecondition that
the terminal pairsT1 − T10 andT2 − T20 act as ports. The pair
Ti − Tj is a port if Ii ¼ −Ij. Onemust determine the relative
potential between our two ports, as measured by, e.g.,
V̄1 − V̄2, which will cause the port condition I1 ¼ −I10 to
be satisfied, then the other condition I2 ¼ −I20 is automati-
cally satisfied, since the total current entering the Hall
conductor is zero. Then the port currents are functions of
the port voltages, viz.,

I1 ¼ Y11ðV̄1 − V̄10 Þ þ Y12ðV̄2 − V̄20 Þ;
I2 ¼ Y21ðV̄1 − V̄10 Þ þ Y22ðV̄2 − V̄20 Þ; (19)

thus defining the 2 × 2 port admittance matrix Y. We now
investigate under what conditions the gyrator matrix Eq. (4)
is obtained.
One further comment about going from terminal to port

response: in the electrical literature, it is often assumed
without discussion [2] that the ports are electrically iso-
lated, meaning that there is identically vanishing depend-
ence on the potential difference between the two ports
(V̄1 − V̄2 in the analysis above). Under these circum-
stances, the port current condition is also automatically
satisfied. This isolation is not present in our device (e.g.,
current can, in principle, flow from terminal 1 to 2). It is
understood that in many circumstances this input-output
isolation is not necessary for proper functioning of the
device; if it is needed, it can be achieved by separate
isolation (e.g., transformer coupling). This issue will arise
one further time in the present paper, in the analysis of the
three-terminal gyrator in Sec. IV E.

A. Response requires only boundary calculation
for Hall angle π=2

We now proceed to explicit calculations of several Hall
gyrator structures. Since, as we confirm shortly, lossless
operation is achieved in the case of a Hall angle equal to
its extremal value of π=2, and so θH ¼ π=2 will be the
principal focus of our study. We will see that our calcu-
lations are well behaved at this value, so that no subtle
limits need to be taken. However, we find that the field
equations simplify remarkably for θH ¼ π=2, permitting
closed-form solutions for a wide class of device structures.
This simplification arises from examining our boundary
condition equation (16) for this case; recalling Eq. (11), we
obtain
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−σ
∂Vðs;ωÞ

∂s ¼ iωcðsÞ½V̄ðωÞ − Vðs;ωÞ�: (20)

This boundary-condition equation now contains only the
tangential derivative of the potential, which involves only
potential values at the boundary. Thus, this equation is
now a closed one-dimensional condition in the boundary
coordinate s, fully determining the field on the boundary
without reference to the interior of the conductor. The field
in the interior of the conductor is still well defined, but it
is entirely a slave of the boundary potential; the full field
can be calculated by considering the perimeter field as a
Dirichlet boundary condition. But all device-response
coefficients are purely functions of the perimeter field,
so the interior field need never be calculated. Two-
dimensional plots of the in-phase and out-of-phase fields
Vðs;ωÞ, for the Hall bar with four capacitive contacts (the
same setup as in Fig. 5), are shown in Fig. 8 for a frequency
for which perfect gyration occurs.
Note that the calculation of the terminal currents also

takes a much simpler form in this case; Eq. (17) becomes

IiðωÞ ¼ −σ
Z
Ti

∂Vðs;ωÞ
∂s ds

¼ σ½Vðs ¼ Li;ωÞ − Vðs ¼ Ri;ωÞ�: (21)

Thus, the current is simply given by the difference of the
potential from the left point of the capacitor Li to the right
point Ri (see also Fig. 7) [51]. Furthermore, the field
solution is completely independent of the shape of the
boundary; it can be deformed at will (as suggested by
Fig. 7), and the boundary potential and all device response
coefficients will be unchanged as long as the perimeter
length P and the capacitance function cðsÞ are unchanged.
Note that for general boundary conditions, the solution
on the perimeter can be written as an integral over the
perimeter [cf. Eq. (7.2.12) of Ref. [50]], but the kernel of
this integral is a Green function which, in the general case,
is globally sensitive to the detailed structure of the entire
conductor. Thus, our situation is quite special.
It is valuable to note that the homogeneous part of

Eq. (20) is a one-dimensional Dirac eigenvalue equation,
with periodic boundary conditions from 0 to P, with cðsÞ
playing the role of the position-dependent mass of that
Dirac equation. The two-component Dirac spinor consists
of the real and imaginary part of V. The eigenfrequencies
ωn of this equation are equally spaced:

ωn ¼
2nπσR
P
0 cðsÞds : (22)

We will see that these eigenmodes have the physical
meaning of chiral edge magnetoplasmons of the Hall
conductor; they will set the scale of frequency at which
interesting gyrator behavior occurs.

Magnetoplasmons have been investigated thoroughly
in 2D Hall conductors [52,53], including in the quantum
Hall regime [54,55]. In Sec. VI we discuss details of how
this work has developed up to the present, and what
suggestions it makes for the physical implementation of
the devices analyzed here.

B. Two-terminal device

While it has no application for gyration (two-terminal
devices must be reciprocal), the solution to the simple two-
terminal problem is instructive, especially for the insight
that it gives into the edge-magnetoplasmon dynamics
in this system. We consider the special case of the two
capacitors with constant capacitance per unit length

FIG. 8. Two-dimensional plots of the in-phase (left-hand panel)
and out-of-phase (right-hand panel) potential fields for a capac-
itively coupled four-terminal Hall-bar device, for θH ¼ π=2. The
frequency of the applied field is νgy ¼ σ=2CL [Eq. (29)], the first
perfect gyration frequency. Contacts span the entire (length ¼ 2)
of the top and bottom edge of the bar, with V̄ ¼ �0.5 V. The
positions of the contacts are indicated with the black bar. Length-
2 contacts are centered on the left and right of the bar, with V̄ ¼ 0.
The capacitance function cðsÞ is a constant on all the terminal
boundaries. Perfect gyration requires that there be current only
from the left to the right terminal, and that it is in phase. We see
that the in-phase current density (left-hand panel), which follows
the potential contours in accordance with the guiding-center
principle, does indeed flow smoothly from one contact to the
other. Note that these contacts are not equipotentials, as they
would be for Ohmic contacts; at this perfect gyration frequency,
however, the top and bottom terminals are at equipotentials.
There is a nonzero out-of-phase current density flow (right-hand
panel), but it is purely local to the contact, and results in no net
current.
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attached to the Hall conductor. Suppose the length of the
capacitor is L and the capacitance per unit length is c, so
that the total lead capacitance is CL ¼ cL. Then the (scalar)
admittance of the device is calculated to be

YðωÞ ¼ iσ tan
ωCL

2σ
: (23)

This solution is still correct for the case when the two leads
have different widths, but the c-L products should be the
same. The placement of the leads around the perimeter is
arbitrary, the lengths of the insulating regions between the
leads are irrelevant, and the conductor can be of arbitrary
shape (including sharp turns). Interior holes in the con-
ductor also play no role. Note that the poles of this
admittance coincide with magnetoplasmon eigenfrequen-
cies [as defined in Eq. (22)], and that the low-frequency
limit iωCL=2 is that of two capacitors CL in series.
In fact, the admittance function (23) is a familiar one. It is

identical to that of a segment of transmission line with
characteristic impedance 1=σ and transit time (wave veloc-
ity times length) of τ ¼ CL=2σ, with an open circuit at
the end. An important feature of this transmission-line
response is that a short voltage pulse applied to it is
perfectly reflecting, but with a transit-time delay of 2τ.
When this pulse is applied to the two-terminal Hall device,
where does the pulse live during this 2τ transit time?
The answer is that when the pulse arrives at the capacitor
electrodes, it produces a nonzero field in the Hall conductor
only in the immediate vicinity of the right edge (points Ri)
of the two capacitors. This localized edge field propagates,
in a dispersionless way, counterclockwise around the edge
of the conductor, with velocity

vpl ¼ L=2τ ¼ σ=c: (24)

After time 2τ, these two edge excitations reach the left
end (points Li) of the capacitors, causing a reemission of
the radiation pulse back into the leads. For normal device
parameters, this plasmon propagation velocity is far smaller
than the speed of light; thus, this “simulated transmission
line” is very compact compared with the corresponding real
transmission line.

C. Four-terminal device: The gyrator

We now return to the four-terminal device, revisiting the
approach of Mason et al. [27] (Fig. 5), with Ohmic contacts
replaced by capacitive contacts. For the case of uniform
capacitance, cðsÞ ¼ const, and four equal contact capaci-
tors with capacitanceCL, the exact solution for the two-port
response matrices is elementary. The admittance is

Y2PðωÞ ¼
σ

2

 
i tan ωCL

σ −1þ sec ωCL
σ

1 − sec ωCL
σ i tan ωCL

σ

!
; (25)

which when inverted gives the two-port impedance

Z2PðωÞ ¼
1

σ

 
−i cot ωCL

2σ −1

1 −i cot ωCL
2σ

!
: (26)

Note that Y and Z satisfy the conditions for multiport
lossless response, which are [2] that the imaginary part of
the matrix be symmetric and an odd function of frequency,
while the real part is antisymmetric and an even function of
frequency. [These conditions are also trivially satisfied for
the one-port device in Eq. (23).] This condition is equiv-
alent to Pdiss ¼ 0 [see Eq. (13)]. This confirms that the
argument given using Eq. (13) applies to our calculation,
given that there is no singularity involved in going to the
θH → π=2 limit. The presence of a nonzero antisymmetric
part indicates the nonreciprocal response of the device.
The periodicity of the response coefficients is again
indicative of “delay-line” behavior; an equivalent circuit
for this response is that of a gyrator with series lossless
transmission-line stubs at the inputs, replacing the resistors
of Fig. 6. We will not explore here the details of the edge-
magnetoplasmon propagation that causes this multiport
response.
While the response for θH ¼ π=2 is thus manifestly

lossless, we can further make a perturbation argument
for the case of Hall angle slightly smaller than 90°,
θH ¼ π=2 − ϵ: to lowest order in ϵ, the field solutions
can be taken to be independent of ϵ, so that the total
dissipation of the device will, using Eq. (13), be propor-
tional to ϵ, but with “nonuniversal” coefficients (i.e.,
dependent on the details of the device geometry).
The scattering matrix is obtained using the formula

S ¼ ðZ þ Z0IÞ−1ðZ − Z0IÞ [1], with Z0 ¼ 1=σ:

S2PðωÞ ¼ 2d−1
 

cos2ðωCL
2σ Þ 2sin2ðωCL

2σ Þ
−2sin2ðωCL

2σ Þ cos2ðωCL
2σ Þ

!
; (27a)

d ¼ 3 cos

�
ωCL

σ

�
− 2i sin

�
ωCL

σ

�
− 1: (27b)

Note that S2P is unitary (because the device is lossless) and
nonsymmetric (because it is nonreciprocal).
The relation to gyration is especially easy to see using

the impedance matrix Eq. (26). There is a series of
frequencies at which perfect gyration [Eq. (3)] is achieved,
given by the equation cotðωCL=2σÞ ¼ 0; these frequencies
are

ωgy ¼
πσ

CL
ð1þ 2nÞ; n ≥ 0; (28)

νgy ¼
σ

2CL
ð1þ 2nÞ ½Hz�; n ≥ 0: (29)
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These perfect-gyration frequencies lie halfway between the
plasmonic poles present in Y, cf. Fig. 10. Thus, the gyration
is fundamentally nonresonant, and is present to good
approximation over relatively wide ranges of frequency.

D. Smoothed capacitances: Two-port case

While many aspects of the device geometry are irrelevant
for the port response, the details of the edge-capacitance
function cðsÞ do matter. We now study the device behavior
if the capacitors are smoothed, so that cðsÞ goes contin-
uously to zero at the edges of the capacitors. Closed-form
expressions of the solution of Eq. (20) are obtainable
for many different tapering functions; a convenient analytic
form is

cðsÞ ¼
� c jsj < L

2

c sech2ð2jsj−L
2λ Þ jsj > L

2
:

(30)

Assuming that the insulating region between contacts is
many λ long, so that there is negligible overlap between
these capacitance functions, we find the two-port admit-
tance to be

Y2P;λ¼
σ sinðLcω

2σ Þ
cosðð2λþLÞcω

σ Þ

×

0
B@−icos

�
ðLþ2λÞcω

2σ

�
sin
�
ðLþ2λÞcω

2σ

�
−sin

�
ðLþ2λÞcω

2σ

�
−icos

�
ðLþ2λÞcω

2σ

�
1
CA: (31)

We see that for small rounding, this response exhibits a
slow modulation in frequency (on the scale of ω ¼ σ=cλ),
with the low-frequency behavior matching the unrounded
(λ ¼ 0) response calculated above. Figure 9 plots this
response and the relevant component of the scattering
matrix S2P;λ, or simply S, for slightly rounded capacitances.
As Fig. 10 shows, at low frequency, perfect gyration occurs
at the regularly spaced frequencies, as indicated by
Eqs. (28) and (29). This is indicated by jS12 − S21j attaining
the value 2; because of unitarity, this can only occur if
S11 ¼ S22 ¼ 0 and S12 ¼ −S21, the conditions for a perfect
gyrator. We see, in fact, that at low frequency this condition
is satisfied over wide bands. As the modulation due to the
rounded contacts begins to have an effect, the frequency
dependence of jS12 − S21j is modified, but it still frequently
returns to the ideal value of 2, albeit over narrower
frequency ranges.

2
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FIG. 9. The behavior of the admittance [Eq. (25)] and of the scattering parameters [cf. Eqs. (3) and (4) with Z0 ¼ 1=σ] for the two-port
device with smoothed capacitive contacts. The capacitance function is as given in Eq. (30), with λ ¼ L=12. We show a large range of
frequency, including about 100 poles of the admittance, and about 50 good gyration points as given by Eq. (28), in order that the slow
modulation of ω on the scale σ=cλ can be seen. The dashed lines showing this modulation sinusoid are guides to the eye. Top panel: (11)
component (pure imaginary) of the admittance matrix Y2P. Middle panel: (12) component of the admittance matrix Y2P. Bottom plot:
jðS2P;λÞ1;2 − ðS2P;λÞ2;1j=2. Because of unitarity, this quantity can attain the value unity only if good gyration is achieved [S matrix
proportional to Eq. (2)]. We see that, despite the modulation caused by smoothing, perfect gyration occurs regularly along the frequency
axis, at points close to those given by Eq. (28) for the unrounded case.
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We note that this modulation causes the perfect gyration
points to change from having a real-valued S matrix
(S12, S21 ¼ �1) to being complex valued; the S matrix
acquires an overall reciprocal phase factor. Since this is
what one obtains for a perfect gyrator with a change of
reference plane [1], it is fair to still refer to this as perfect
gyration. It would, however, require some reconsideration
of the Hogan construction, Fig. 4; the reference arm of this
interferometer would have to have a corresponding phase
change, which may cause it to be a significant fraction of a
wavelength in size. To make this construction compact in
this case, the reference arm phase delay could be simulated
by two cascaded Hall effect gyrators, chosen to given the
correct overall net reciprocal phase [18].
Finally, we note that we have used a source impedance

Z0 ¼ 1=σ for calculating S. We find that for Z0 > 1=σ, the
perfect gyration condition jS12 − S21j ¼ 2 continues to be
satisfied for a regularly spaced set of frequencies. For
Z0 < 1=σ (the more likely case, see the discussion in
Sec. V), perfect gyration no longer occurs at low frequen-
cies, but with finite rounding, at higher frequency perfect
gyration again occurs. However, for large impedance
mismatch Z0 ≪ 1=σ, good gyration occurs only over very
narrow ranges of frequency.

E. Three-terminal device and the
Carlin construction

Carlin and Giordano [56,57] (see also Ref. [2]) noted
that there are several alternatives to the Hogan con-
struction (Fig. 4) for realizing a three-port circulator
using a gyrator. They are arguably more direct in that
they do not require an interferometer. In Carlin’s
original construction, he employs the classic Tellegen
gyrator [Fig. 3(b)] tied to a common ground, i.e., with
terminals 2 and 20 short-circuited. This approach cannot
be applied directly to our four-terminal Hall gyrator,
because of the lack of input-output isolation mentioned

above (Sec. IV). However, Carlin’s construction can be
stated more directly: a three-terminal device with the right
nonreciprocal admittance matrix [see Eq. (32)] can be
converted to a circulator with either of the two Carlin
constructions, Figs. 11 and 12. The “dual” construction of
Fig. 12 actually gives a phase-inverting circulator, with S
being the negative of Eq. (1); we are not aware of any
current application of the circulator in which the phase of S
is relevant.
Perfect Carlin circulation is obtained with a three-

terminal device with the admittance matrix

FIG. 11. The construction of Carlin [2,56,57] for realizing a
circulator of Fig. 1 and Eq. (1), given a nonreciprocal three-
terminal device (terminals defined at solid dots) with admittance
as in Eq. (32). Anticipating Sec. VI and Fig. 15, we depict the
capacitive contacts as strips overlapping the edge of a rectangular
piece of Hall material; the capacitances should be the same, and
may or may not be rounded. Note that the primed terminals of
each of the three external ports are tied together, but should be
kept away from the Hall device so that they have no Ohmic or
capacitive contact with it.

FIG. 12. A dual construction of Carlin [56,57] for realizing a
circulator with the same three-terminal device as in Fig. 11.
Phase-inverted circulation is achieved; i.e., the S matrix is the
negative of Eq. (1).
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ΩCL

2Σ
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FIG. 10. Close-up of Fig. 9: jðS2P;λÞ1;2 − ðS2P;λÞ2;1j=2,
jðY2P;λÞ11j, and jðY2P;λÞ21j in green, blue, and red, respectively,
at low frequency. Over the first period of the response (i.e., for
0 < ωCL=2σ < π), the response shown here is almost indistin-
guishable from that of the constant capacitance, Eqs. (25) and (32).
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Y3TðωÞ ¼

0
B@

ia b −b�

−b� ia b

b −b� ia

1
CA; (32)

when a ¼ 0, ImðbÞ ¼ 0, and ReðbÞ ¼ 1=Z0, the source
impedance. This is obtained by using a three-terminal Hall
device with equal contact capacitances CL. (The naive
procedure of short-circuiting 2 and 20 in the four-terminal
device would lead to one contact effectively having
capacitance 2CL.) For the case of constant capacitance
functions, the response is as in Eq. (32), with

a ¼ 2σ sin ωCL
σ

1þ 2 cos ωCL
σ

; (33)

b ¼ σ
−1þ exp −iωCL

σ

1þ 2 cos ωCL
σ

: (34)

If the device is matched (Z0 ¼ 1=σ), perfect circulation is
obtained at the frequencies

νcirc ¼
σ

2CL
ð1þ 2nÞ½Hz�; n ¼ 1; 2;…: (35)

F. Rounded capacitances: Three-terminal case

This response matrix can also be easily calculated in the
case of rounded capacitance, Eq. (30). The result is

Y3T;λ ¼

0
B@

iaλ bλ −b�λ
−b�λ iaλ bλ
bλ −b�λ iaλ

1
CA; (36a)

aλ ¼ 2σ
sinðcωðλþLÞ

σ Þ − sinðcλωσ Þ
1þ 2 cosðcωð2λþLÞ

σ Þ
; (36b)

bλ ¼ σ
expð−icλωσ Þ½−1þ expð−icLωσ Þ�

1þ 2 cosðcωð2λþLÞ
σ Þ

: (36c)

This response again has the same slow modulation in
frequency as in the four-terminal case. In Fig. 13, we
characterize the quality of the resulting impedance-matched
circulator by computing the quantity jðS3T;λÞ13þðS3T;λÞ21þ
ðS3T;λÞ32j, which, due to the unitarity of the S matrix, can
be equal to 3 only for the case of an ideal circulator
(independent of references phases). We see that at low
frequency, perfect functioning is obtained; the response
is not as robust as in the two-port case, in the sense that
when the modulation due to the rounding becomes impor-
tant, circulation is degraded (to recur again at higher
frequency). Another interesting functionality emerges: as

the anticlockwise circulation degrades, clockwise circula-
tion, as measured by jðS3T;λÞ31 þ ðS3T;λÞ12 þ ðS3T;λÞ23j,
occurs, which becomes almost perfect in a range of
frequencies. Thus, we have a set of interesting alternatives
for achieving circulation. Compared with the Hogan
circulator, the Carlin circulators are more flexible, but
are more sensitive to capacitance rounding and do not work
properly when there is an impedance mismatch.

V. INDUCTIVELY COUPLED HALL
EFFECT GYRATOR

As pointed out in Tellegen’s original work [18], both
electric and magnetic effects can be considered for gyra-
tion. We, therefore, briefly take up a dual approach to
using the Hall effect for gyration, in which the lead
coupling is magnetic rather than electric. This approach
leads to a very elegant view of the response of a Hall
structure to magnetic induction, but we consider this
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FIG. 13. Characterization of the scattering matrix of the first
Carlin construction (Fig. 11) with rounded capacitances. Round-
ing is as in Eq. (30), with λ ¼ L=12. Upper panel:
jðS3T;λÞ13 þ ðS3T;λÞ21 þ ðS3T;λÞ32j. Because of unitarity, the maxi-
mal value this sum can attain is 3, and at such a point, perfect
counterclockwise (1 → 2 → 3 → 1) circulation is achieved.
We see that when the slow modulation due to the rounding
begins to occur, perfect gyration is lost. Bottom panel:
jðS3T;λÞ31 þ ðS3T;λÞ12 þ ðS3T;λÞ23j. We see that the modulation
causes this quantity to periodically attain the value 3, meaning
that perfect clockwise circulation (1 → 3 → 2 → 1) is attained.
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approach less promising for application and will only give a
sketch of the results.
Inductive coupling requires loops of conductor; thus, we

consider the nonplanar Hall-material geometry shown in
Fig. 14. Topologically this surface is a torus with a hole
cut into it; such a geometry was actually considered, for a
Faraday material, by Tellegen in his later work [20]. While
the topology we consider here has been standard in thought
experiments for understanding the quantum Hall effect
[58], and very analogous “crossover” Hall topologies have
been noted for the achievement of interesting effects for
quantum error correction [59,60], it must be understood
that there is no material system in which there is a known
technique for actually producing a material with a large
Hall effect in such a topology. It is for this reason that we do
not anticipate that experiments can be performed to pursue
this idea, but its principles are interesting to elucidate
nonetheless.
Returning to Fig. 14, we suppose that one port provides

input by the ac signal applied as a magnetic flux Φext
1 ðtÞ.

The time derivative of this flux produces an emf E1 around

loop 1. Since there is then a nonzero line integral of the
electric field around this loop, the potential field VðrÞ,
strictly speaking, does not exist, but since ∇ · E ¼ 0, one
can locally define a potential that satisfies the Laplace
equation, but it will be multivalued, increasing by E1 each
time a path is taken around the loop. This can be
unwrapped into a periodic representation, as shown in
Fig. 14. In the limit of θH ¼ π=2, the boundary condition
becomes trivial; we can use the equations given above with
cðsÞ ¼ 0. This says that the potential, in this periodic
representation, is an equipotential on each of the periodic
images of the loop edges, as shown in Fig. 14. Furthermore,
the very simple relation between conductor current and
boundary potentials, Eq. (21), means that the relation
between the loop current and the emf in the other loop
is perfect gyration, independent of frequency and depen-
dent only on topology:

I2 ¼ σE1; I1 ¼ −σE2: (37)

The trouble with this approach, other than the extreme
difficulty of producing nonplanar conductors exhibiting a
large Hall effect, is the need to couple externally to the
variables of Eq. (37), which requires two transformerlike
structures. The weakness of magnetic coupling makes this
problematic.
We find that the inductance L of this coupling structure

imposes a lower cutoff on the frequency at which gyration
becomes effective. This frequency scales like ωcutoff∼
Rgy=L ¼ 1=σL. The scale of inductance is set by
L ∼ μμ0d, where d is the physical scale of the device. If
the scale of σ is the quantum scale h=e2, then the cutoff,
expressed as a wavelength, is given by the scale of
d ∼ wavelength=α, where α is the fine-structure constant.
This suggests that the physical scale of the inductive
device needs to be ∼137 times larger than wavelength of
the ac radiation on which it operates. The normal method of
combatting this size penalty in transformer structures is to
use high-permeability materials (high μ) and enhancing the
inductance by multiple turns of conductor. While this is a
successful strategy for ordinary transformers, it is prob-
lematic here because the high permeability would need to
be retained at high applied magnetic field (see following
section), and, even worse, because the Hall conductor
would need to be formed into some multiturn corkscrew.
Given that even the one-turn structure of Fig. 14 is beyond
any present capability, we would not judge these strategies
for making an inductively coupled gyrator very promising.
It is worth noting that applying the same scaling argu-

ment to the capacitively coupled gyrator is much more
optimistic: the characteristic frequency goes like ωcutoff∼
1=RC ¼ σ=C, the scale of C is C ∼ ϵϵ0d [61], so that if
again we take σ ∼ h=e2, then we infer

d ∼ α × wavelength; (38)

FIG. 14. Top: Two-loop, nonplanar Hall conductor for realizing
an inductively coupled gyrator. The magnetic field texture
necessary to produce the Hall effect in this conductor is shown;
threading fluxes Φext

1 and Φext
2 can apply electromotive forces

Ei ¼ _Φext
i around the two loops. Bottom: Periodic representation

of a conductor, in which the loops are unwrapped at the wavy
lines in the top figure. The solution to the field problem for Hall
angle θH ¼ π=2 is given by setting the boundaries of this
structure to the equipotentials indicated, which linearly increase
from cell to cell as determined by the two emfs E1;2.
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that is, the natural scale of our capacitive device is 137
times smaller than the wavelength, that is, 137 times
smaller than the natural scale of Hogan’s Faraday-effect
circulator. This comparison is perhaps unfair, since the
desired admittance scale of 1=50 Ω wipes out the factor of
α from Eq. (38); on the other hand, it is very easy to make
capacitors whose capacitance far exceeds the dimensional
estimate just used (viz., the parallel-plate capacitor with
area much larger than thickness), and we have seen that
there are impedance-matching possibilities in the calcu-
lations given above so that, at least to achieve gyration
over narrow bandwidths, matching 1=σ to 50 Ω need not be
necessary. For engineering applications, the natural imped-
ance-match condition 1=σ ¼ 50 Ω would, of course, be
ideal. Two routes are available for this. First, σ can be some
integer multiple ν of e2=h; a filling factor ν in the range of
10–20 is feasible. Second, a stack of Hall conductors can
be put in parallel, further increasing the total conductance.
Of course, to keep the gyration frequencies in the desired
range while increasing σ, the total capacitances would also
have to be correspondingly increased [cf. Eq. (28)].

VI. EXPERIMENTAL CONCEPTS FOR
CAPACITIVE GYRATOR

Here, we will explore the relation of our capacitive
gyrator proposal to experimental observations in recent
years involving magnetoplasmonic phenomena in Hall
conductors, both in III–V heterostructures and in graphene.
Under conditions of the quantum Hall effect, θH ¼ π=2
[i.e., when the conditions Eq. (12) apply], evidence for
dispersionless edge-magnetoplasmon propagation was
already observed in the late 1980s [54,55]. It was later
proved [63] that these magnetoplasmons propagate with
low loss and chirally (that is, in one direction only along
the edge). Further work established that the propagation
velocity of these excitations follows a law like Eq. (24);
however, the edge capacitance c does not follow a simple
classical picture. In fact, it is quantitatively confirmed
[64,65] that the quantum capacitance picture, as analyzed
theoretically by Büttiker and co-workers [66–68], is nec-
essary for explaining the observed dynamics.
The quantum effect involved in the quantum capacitance

is the Pauli exclusion principle. Unlike in an ideal classical
metal, electric charge cannot be added or removed from the
conductor without a change of the electrochemical poten-
tial. This manifests itself as an extra effective capacitance,
in parallel with the classical geometrical capacitance, given
by the equation

Cq ¼ e2
dN
dE

: (39)

Here, dN=dE is the density of levels around the Fermi
energy. In the ideal quantum Hall state, this is quite small,
so that Cq is small and can easily dominate over the

geometrical capacitance. In this state, there are no bulk
states at the Fermi energy, so that only states at the edge of
the conductor contribute. Within the standard edge-state
picture, the edge-state capacitance per unit length [64], per
edge state (corresponding to filling factor ν ¼ 1), is [44]

cq ¼
e2

h
1

vdrift
: (40)

Here, vdrift, the velocity of the electron wave functions on
the edge, has another simple classical meaning: it is the drift
velocity of a ballistic direction subject to crossed magnetic
and (confining) electric fields. From Eq. (24), we see that if
the edge capacitance is cq, which will be true as long as the
geometric capacitance is in excess of this modest value,
then the magnetoplasmon velocity is essentially equal to
the drift velocity. This is a very special coincidence of the
quantum chiral edge state situation: in general, plasmon
velocities and Schrödinger wave velocities are determined
by very different parameters.
There has been a very recent surge of interest in these

investigations in the new graphene quantum Hall system.
The same chiral plasmon physics is also readily observed
in this system [69]. Precise magnetoplasmon parameters
have recently been observed in graphene flakes [70], with
measured edge quantum capacitance per unit length found
to be cq ¼ 100 pF=m, very consistent with theoretical
estimates for graphene based on Eqs. (39) and (40). The
latest report of this work has, in fact, clearly indicated the
potential for graphene chiral magnetoplasmons for micro-
wave circulators and other applications [71].
The results of this paper indicate definite directions and

design criteria that can put this realization into practice.
To properly interface the plasmonic excitations, whose
physics has now been well documented, with the in- and
out-propagating guided electromagnetic waves of a real
device, our results indicate that all contacts to the device
should be capacitive, and not the combination of capacitive

FIG. 15. An exploded view of a sandwich structure, based on
the capabilities recently reported in Ref. [62]. A graphene flake is
encapsulated between two layers of insulating boron nitride
(BN). Four edge electrodes grown above the structure as shown
could serve as the four capacitive contacts of the two-port gyrator.
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and Ohmic contacts that are currently used in physical
experiments. Our results further indicate that the physi-
cal scale d of the device (see Fig. 15), in order for there
to be successful gyrator and circulator action in the GHz
frequency range, should be in the millimetre range,
given the measured values of cq. (There could be some
advantage in going to III–V heterostructure Hall con-
ductors; especially with soft edge confinement, the drift
velocities can be smaller than in graphene, with a
correspondingly larger cq and smaller length scale for
the GHz device.)
According to our work, the optimal device would have

most of its perimeter occupied by contact capacitors, to
maximize CL and minimize any stray capacitance of
uncontacted edges to ground. That is, all displacement
currents should travel in and out of the conductor via the
contact capacitors; as noted earlier, displacement currents
to ground must be avoided. Note that a gate (top or bottom),
even one with a very large geometric capacitance, is not a
concern here, since its quantum capacitance is virtually
zero [because there is no bulk density of states, see
Eq. (39)], so it will carry no ac displacement current.
We can mention one other scenario, in which the

optimization of the device structure would be quite differ-
ent. One can, with a very slight adjustment of parameters
(e.g., magnetic field) work not in the fully developed
quantum Hall regime, when θH is precisely 90°, but rather
in the regime of the nonmaximal Hall effect, e.g., θH ¼ 85°.
This would make the device lossy, but, especially in the
isolator application, some small degree of loss is not very
detrimental to its operation. In this regime, away from
the quantum Hall “plateaus,” bulk density of states is
present, meaning that dN=dE, and cq, is much larger.
Under these circumstances, an enhanced geometrical
capacitance, achieved by making a top capacitor extending
into the bulk of the conductor some distance from the edge
(as suggested by Fig. 15), could lead to a much more
miniaturized device. Rough calculations suggest that GHz
operation could then be achieved even for d in the range
of d ¼ 10 μm.
At this length scale, a new encapsulation technique [62]

indicated in the figure, which involves sandwiching an
isolated flake of graphene between two extremely thin
(∼10 nm) layers of insulating boron nitride (BN), has made
available graphene samples with very small disorder (which
could permit high Hall angle to be achieved for larger
filling fraction ν and/or at higher temperatures). It has been
known for some time that the quantum Hall effect is rather
robustly achievable in graphene, with σ ¼ h=e2 corre-
sponding to one filled Landau level. Larger σ, correspond-
ing to filling multiple Landau levels, is also achievable, and
would permit operation at smaller magnetic field. Magnetic
fields on the tesla scale will be required; one might
speculate that micromagnet structures could permit a very
compact encapsulated device with small fringing fields.

A small modification of the Ohmic contacting technique
pioneered in Ref. [62] should permit very well controlled
fabrication of the lead capacitors indicated in the figure.
A new difficulty would arise because, unlike in the fully
developed quantum Hall situation, the bulk density of states
would be nonzero and a gate capacitor would convey
undesired displacement current in and out of the sample,
depending on the details of the bulk charge transport
mobility [72]. Thus, consideration would have to be given
to making the bulk of the conductor floating, or controlled
only by a very low Cg, remote gate capacitor.

VII. CONCLUSIONS AND
OUTLOOK—QUANTUM EFFECTS

While the use of Hall conduction for the achievement of
gyration and circulation was declared impossible in 1954,
the results of this paper indicate that this conclusion was
premature; with current device capabilities, such a gyrator
might actually be possible in the near future. It is curious
that the fundamentally different possibilities offered by
reactive rather than galvanic coupling to the Hall conductor
were not examined a long time ago. Capacitive coupling
was always, of necessity, the method of contact for the
2DEG formed by electrons floating on the surface of liquid
helium. But throughout the extensive literature on this
subject [73–77], it seems that this coupling scheme was
always viewed only as a means to learn the basic response
coefficients of this electronic system, rather than an
interesting device feature in its own right. In metrological
discussions [78,79], careful accounting of capacitive effects
has been made, but only in a setting where the basic
coupling is Ohmic. Finally, there is other literature in which
transport through semiconductor 2DEGs is achieved with
capacitive coupling [80,81], but with the orientation that
the experimental data extractable from capacitive versus
Ohmic contacts are equivalent, without any attention given
to the difference that this might produce.
The present study is obviously incomplete, in that no

quantum analysis has been provided for the functionalities
that we have studied. The classical Ohm-Hall approach has
proven its worth in modeling the phenomenology of Hall-
conduction devices from the 1950s [27] up to the present
[30,31,47]. While we can expect that some new quantum or
mesoscopic phenomena would manifest themselves in the
capacitively coupled devices that we have analyzed here,
perhaps at low temperature or in very clean systems, we can
feel comforted that since the properties we discuss here
are fundamentally classical, they should be robust even in
the face of considerable disorder, or at (moderately) high
temperature. While the achievement of Hall angles very
precisely equal to 90° is very important in metrological
applications, it is not so important here; a Hall angle of 85°
would still permit excellent gyrator, isulator, or circulator
action.

HALL EFFECT GYRATORS AND CIRCULATORS PHYS. REV. X 4, 021019 (2014)

021019-15



Quantum considerations are clearly very significant in
setting limits on the validity of the results derived here. The
classical theory has no limit on the linearity of the response;
we should expect departures from linearity at least when
the potential drops in the device reach the Landau-level
energy spacing. Likewise, operating frequencies are cer-
tainly limited to below the inter-Landau-level transition
frequency. In a classical theory, any plasmon velocity is
possible, with a straightforward geometric dependence
on edge capacitance; the quantum description, as we have
seen, intimately links the edge plasmon velocity to the drift
velocity, itself fixed by the phase velocity of electron
Schrödinger waves. Finally, the classical theory has no
lowest length scale of validity, while the quantum magnetic
length is clearly a lower limit on the device dimensions that
can reasonably be considered.
Fortunately, there is a strong basis for further work on

the quantum aspects of this problem, as established in the
theoretical work of Büttiker and co-workers in the trans-
mission theory of admittance and dynamic conductance
[82,83]. The recent work of Aita et al. [84] offers significant
progress in defining the basic elements of a theory including
electron correlation effects, going beyond the Hartree treat-
ment of previous work. Time will tell what tools will be
needed to model important new aspects of this problem.
While the Hall effect was declared unsuitable for the

realization of gyrators and circulators 60 years ago, we can
hope that, after a long period of quiescence, the simple idea
of reactive coupling to the Hall conductor will lead to a
successful revival of this idea, with novel, miniaturized
devices providing useful alternatives for constructing new
low-temperature quantum technologies.
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