000172046 001__ 172046
000172046 005__ 20210129214349.0
000172046 020__ $$a978-1-4799-54759
000172046 0247_ $$2GVK$$aGVK:594042399
000172046 0247_ $$2Handle$$a2128/8058
000172046 037__ $$aFZJ-2014-05595
000172046 041__ $$aEnglish
000172046 1001_ $$0P:(DE-HGF)0$$aMarso, M.$$b0
000172046 1112_ $$aASDAM 2014$$cSmolenice$$d2014-10-20 - 2014-10-22$$wSlovakia
000172046 245__ $$aInGaN nano-LEDs for energy saving optoelectronics
000172046 260__ $$aDanver, MA 01923$$bIEEE$$c2014
000172046 300__ $$a315-318
000172046 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s172046
000172046 3367_ $$033$$2EndNote$$aConference Paper
000172046 3367_ $$2ORCID$$aCONFERENCE_PAPER
000172046 3367_ $$2DataCite$$aOutput Types/Conference Paper
000172046 3367_ $$2DRIVER$$aconferenceObject
000172046 3367_ $$2BibTeX$$aINPROCEEDINGS
000172046 520__ $$aVertically integrated III-nitride nano-LEDs designed for operation in thetelecommunication-wavelength range were fabricated and tested in the (p-GaN/InGaN/n-GaN/sapphire) material system. We found that the band edgeluminescence energy of the nano-LEDs could be engineered by their size andby the strain interaction with the masked SiO2/GaN substrates; it dependslinearly on the structure size. The results of reliability measurements provethat our technological process is perfectly suited for long-term operation ofthe LEDs without any indication of degradation effects. The presentedtechnology shows strong potential for future low energy consumptionoptoelectronics.1. IntroductionSingle photon emitters based on InGaN nano-LEDs (light emitting diodes) operating atroom temperature are the key to enable future low energy consumption, highly secure andultrafast optoelectronics [1]. There is an especially strong need to develop such emittingsources at the wavelengths used for telecommunication, which are fully compatible withestablished communication systems. Major challenges are the whole nano-LED integrationtechnology and especially the contacts. The top contact should be highly electricallyconductive, highly optically transparent, thermally and mechanically stable and simple tofabricate.2. Device fabricationFirst, we started with the site-controlled growth of InGaN nanostructures via catalystfreeselective-area MOVPE [2]. The manufacturing process was optimized with respect to themask pattern in order to be able to fabricate individually addressable InGaN nanopyramidbased nano-LEDs. The starting point for growth were uniform and smooth n-GaN layers of atleast 1.3μm on sapphire (c-plane) masked with SiO2. Afterwards a hexagonally arranged arrayof openings was defined by electron beam lithography followed by reactive ion etching (RIE)with trifluoromethane (CHF3) gas. The separation distance was fixed to 3μm and the bottomhole diameter was varied from 20 nm to 100 nm. All samples were grown by MOVPE in anAIX 200/4 RF-S horizontal flow reactor (AIXTRON). The growth parameters were tunedwith respect to the highest possible selectivity. After this optimization, the growth time was978-1-
000172046 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000172046 588__ $$aDataset connected to GVK
000172046 65017 $$0V:(DE-MLZ)GC-120$$2V:(DE-HGF)$$aInformation Technology and Functional Materials $$x0
000172046 693__ $$0EXP:(DE-MLZ)DEL-20140101$$5EXP:(DE-MLZ)DEL-20140101$$eDetectors/Electronics$$x0
000172046 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1
000172046 7001_ $$0P:(DE-HGF)0$$aWinden, W.$$b2
000172046 7001_ $$0P:(DE-HGF)0$$aArango, Y. C.$$b3
000172046 7001_ $$0P:(DE-Juel1)144017$$aSchäfer, Anna$$b4
000172046 7001_ $$0P:(DE-HGF)0$$aSofer, Z.$$b5
000172046 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000172046 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b7
000172046 8564_ $$uhttps://juser.fz-juelich.de/record/172046/files/FZJ-2014-05595.pdf$$yOpenAccess
000172046 8564_ $$uhttps://juser.fz-juelich.de/record/172046/files/FZJ-2014-05595.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000172046 8564_ $$uhttps://juser.fz-juelich.de/record/172046/files/FZJ-2014-05595.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000172046 8564_ $$uhttps://juser.fz-juelich.de/record/172046/files/FZJ-2014-05595.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000172046 909CO $$ooai:juser.fz-juelich.de:172046$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000172046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144017$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000172046 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000172046 9132_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000172046 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000172046 9141_ $$y2014
000172046 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172046 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000172046 980__ $$acontrib
000172046 980__ $$aVDB
000172046 980__ $$aUNRESTRICTED
000172046 980__ $$aFullTexts
000172046 980__ $$aI:(DE-Juel1)PGI-9-20110106
000172046 9801_ $$aFullTexts