001     172054
005     20210129214350.0
024 7 _ |a 10.3762/bjnano.5.203
|2 doi
024 7 _ |a 2128/8054
|2 Handle
024 7 _ |a WOS:000344406300001
|2 WOS
024 7 _ |a altmetric:2832554
|2 altmetric
024 7 _ |a pmid:25383304
|2 pmid
037 _ _ |a FZJ-2014-05603
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)159373
|a Green, Matthew
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope
260 _ _ |a Frankfurt, M.
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 172054
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a One of the paramount goals in nanotechnology is molecular-scale functional design, which includes arranging molecules into complex structures at will. The first steps towards this goal were made through the invention of the scanning probe microscope (SPM), which put single-atom and single-molecule manipulation into practice for the first time. Extending the controlled manipulation to larger molecules is expected to multiply the potential of engineered nanostructures. Here we report an enhancement of the SPM technique that makes the manipulation of large molecular adsorbates much more effective. By using a commercial motion tracking system, we couple the movements of an operator's hand to the sub-angstrom precise positioning of an SPM tip. Literally moving the tip by hand we write a nanoscale structure in a monolayer of large molecules, thereby showing that our method allows for the successful execution of complex manipulation protocols even when the potential energy surface that governs the interaction behaviour of the manipulated nanoscale object(s) is largely unknown.
536 _ _ |0 G:(DE-HGF)POF2-422
|a 422 - Spin-based and quantum information (POF2-422)
|c POF2-422
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)156533
|a Esat, Taner
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)140276
|a Wagner, Christian
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)164154
|a Leinen, Philipp
|b 3
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Grötsch, Alexander
|b 4
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, Frank Stefan
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)128792
|a Temirov, Ruslan
|b 6
|u fzj
773 _ _ |0 PERI:(DE-600)2583584-1
|a 10.3762/bjnano.5.203
|g Vol. 5, p. 1926 - 1932
|p 1926 - 1932
|t Beilstein journal of nanotechnology
|v 5
|x 2190-4286
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/172054/files/FZJ-2014-05603.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172054/files/FZJ-2014-05603.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172054/files/FZJ-2014-05603.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172054/files/FZJ-2014-05603.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172054
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)159373
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156533
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)140276
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)164154
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128792
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b POF III
|l Forschungsbereich Energie
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |0 G:(DE-HGF)POF2-422
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |0 LIC:(DE-HGF)CCBY2
|2 HGFVOC
|a Creative Commons Attribution CC BY 2.0
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0500
|2 StatID
|a DBCoverage
|b DOAJ
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21