000172066 001__ 172066
000172066 005__ 20210129214351.0
000172066 0247_ $$2doi$$a10.1016/j.still.2014.07.016
000172066 0247_ $$2ISSN$$a0167-1987
000172066 0247_ $$2ISSN$$a1879-3444
000172066 0247_ $$2WOS$$aWOS:000341902400019
000172066 037__ $$aFZJ-2014-05610
000172066 082__ $$a630
000172066 1001_ $$0P:(DE-Juel1)145704$$aBorchard, Nils$$b0$$eCorresponding Author$$ufzj
000172066 245__ $$aApplication of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice
000172066 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2014
000172066 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415173676_23055
000172066 3367_ $$2DataCite$$aOutput Types/Journal article
000172066 3367_ $$00$$2EndNote$$aJournal Article
000172066 3367_ $$2BibTeX$$aARTICLE
000172066 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172066 3367_ $$2DRIVER$$aarticle
000172066 520__ $$aAdding biochar to tropical soils is a strategy for improving crop yield and mitigating climate change, but how various biochar types affect crop yield and the properties of temperate soils is still in dispute. Here, we evaluated how slow-pyrolysis charcoal and two biochars derived from energy production (gasification coke and flash-pyrolysis char) affected the growth of Zea mays L. and the related properties of sandy and silty soils within a 3-year mesocosm experiment. Fertilization was performed to optimize plant growth as would be done under common agricultural practice. Analyses included the monitoring of yield, plant and soil nutrients, aggregate stability, cation exchange and water holding capacity, and black carbon content. The results showed that the added biochars did not affect crop yield at an application rate of 15 g biochar kg−1 of soil. Increasing the application rate of slow-pyrolysis charcoal to 100 g kg−1 resulted in decreased plant biomass in the second and third year of the experiment, likely as a result of nutrient imbalances and N-immobilization. We did not detect any degradation of the added black carbon; however, beneficial effects on plants were limited by the small and transient effect of these biochars on the physical and chemical properties of soil. Overall, our results indicate that the added carbon from biochars is stored in soil, but all treatments tested failed to improve plant yield for the studied temperate soils under the given application rates and common agricultural practice.
000172066 536__ $$0G:(DE-HGF)POF2-245$$a245 - Chemicals in the Environment (POF2-245)$$cPOF2-245$$fPOF II$$x0
000172066 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000172066 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172066 7001_ $$0P:(DE-HGF)0$$aSiemens, Jan$$b1
000172066 7001_ $$0P:(DE-HGF)0$$aLadd, Brenton$$b2
000172066 7001_ $$0P:(DE-HGF)0$$aMöller, Andreas$$b3
000172066 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b4$$ufzj
000172066 773__ $$0PERI:(DE-600)1498737-5$$a10.1016/j.still.2014.07.016$$gVol. 144, p. 184 - 194$$p184 - 194$$tSoil & tillage research$$v144$$x0167-1987$$y2014
000172066 8564_ $$uhttps://juser.fz-juelich.de/record/172066/files/FZJ-2014-05610.pdf$$yRestricted
000172066 909CO $$ooai:juser.fz-juelich.de:172066$$pVDB:Earth_Environment$$pVDB
000172066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145704$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172066 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172066 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000172066 9131_ $$0G:(DE-HGF)POF2-245$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vChemicals in the Environment$$x0
000172066 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000172066 9141_ $$y2014
000172066 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172066 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172066 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172066 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172066 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172066 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172066 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172066 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172066 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000172066 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172066 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000172066 980__ $$ajournal
000172066 980__ $$aVDB
000172066 980__ $$aI:(DE-Juel1)IBG-3-20101118
000172066 980__ $$aUNRESTRICTED