001     172068
005     20210129214352.0
024 7 _ |a 10.1016/j.soilbio.2014.06.009
|2 doi
024 7 _ |a 0038-0717
|2 ISSN
024 7 _ |a 1879-3428
|2 ISSN
024 7 _ |a WOS:000341556600022
|2 WOS
037 _ _ |a FZJ-2014-05612
082 _ _ |a 570
100 1 _ |a Liu, Shurong
|0 P:(DE-Juel1)156153
|b 0
245 _ _ |a The role of UV-B radiation and precipitation on straw decomposition and topsoil C turnover
260 _ _ |a Amsterdam [u.a.]
|c 2014
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1415687893_4055
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In arid and semi-arid area, ultraviolet-B (UV-B) radiation plays a mainly positive role in litter decomposition. In subtropical area, however, the role of UV-B radiation remains uncertain due to the interference of precipitation. To evaluate the potential contribution of precipitation to the role of UV-B radiation, we exposed 84 bags of rice straw to ambient and reduced UV-B radiation, with and without water addition after each precipitation event, on the roof of a building at Huazhong Agricultural University (Wuhan, China). Additionally, the indirect effects of UV-B radiation on soil dissolved organic carbon (DOC) were investigated by placing 70-g soil samples beneath 5-g straw bags with precipitation treatments. Mass loss, DOC and water extractable phenols (WEP) were monitored over 228 days. Subsequently, microbial facilitation was studied, by incubating straw and soil samples exposed for the longest period (228 days) in the laboratory at 25 °C, and by afterwards analyzing their CO2–C emission. Our results demonstrated that UV-B radiation did not significantly affect straw mass loss, but induced an increase in straw DOC, WEP and CO2–C emission by 20.6%, 10.7% and 20.4%, respectively, under dry conditions. Whereas, combined with precipitation, the effects of UV-B radiation on straw DOC, WEP and CO2–C emission were negligible. Only a small decrease in soil DOC (9.9%) and CO2–C (4.0%) was observed. Furthermore, UV-B radiation interacted significantly with precipitation during straw decomposition. These results indicate that for dry conditions UV-B radiation accelerates straw decomposition by increasing DOC content. For wet conditions, however, the effects of UV-B radiation on straw decomposition are balanced out and even negative on topsoil C turnover.
536 _ _ |a 246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)
|0 G:(DE-HGF)POF2-246
|c POF2-246
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF3-255
|f POF III
|x 1
|c POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Hu, Ronggui
|0 P:(DE-HGF)0
|b 1
|e Corresponding Author
700 1 _ |a Cai, Gaochao
|0 P:(DE-Juel1)156154
|b 2
700 1 _ |a Lin, Shan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhao, Jinsong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Yayu
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1016/j.soilbio.2014.06.009
|g Vol. 77, p. 197 - 202
|0 PERI:(DE-600)1498740-5
|p 197 - 202
|t Soil biology & biochemistry
|v 77
|y 2014
|x 0038-0717
856 4 _ |u https://juser.fz-juelich.de/record/172068/files/FZJ-2014-05612.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172068
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156153
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156154
913 2 _ |a DE-HGF
|b POF III
|l Marine, Küsten- und Polare Systeme
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrische Umwelt
|x 0
913 1 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-HGF)POF2-246
|2 G:(DE-HGF)POF2-200
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-255
|x 1
|v Terrestrial Systems: From Observation to Prediction
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|l Terrestrische Umwelt
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21