000172070 001__ 172070
000172070 005__ 20210129214352.0
000172070 0247_ $$2doi$$a10.1002/2013WR014020
000172070 0247_ $$2ISSN$$a0043-1397
000172070 0247_ $$2ISSN$$a0148-0227
000172070 0247_ $$2ISSN$$a1944-7973
000172070 0247_ $$2WOS$$aWOS:000342632300034
000172070 0247_ $$2Handle$$a2128/17091
000172070 037__ $$aFZJ-2014-05614
000172070 082__ $$a550
000172070 1001_ $$0P:(DE-HGF)0$$aBeaujean, J.$$b0$$eCorresponding Author
000172070 245__ $$aCalibration of seawater intrusion models: Inverse parameter estimation using surface electrical resistivity tomography and borehole data
000172070 260__ $$aWashington, DC$$bAGU$$c2014
000172070 3367_ $$2DRIVER$$aarticle
000172070 3367_ $$2DataCite$$aOutput Types/Journal article
000172070 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415688114_4053
000172070 3367_ $$2BibTeX$$aARTICLE
000172070 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172070 3367_ $$00$$2EndNote$$aJournal Article
000172070 520__ $$aElectrical resistivity tomography (ERT) can be used to constrain seawater intrusion models because of its high sensitivity to total dissolved solid contents (TDS) in groundwater and its relatively high lateral coverage. However, the spatial variability of resolution in electrical imaging may prevent the correct recovery of the desired hydrochemical properties such as salt mass fraction. This paper presents a sequential approach to evaluate the feasibility of identifying hydraulic conductivity and dispersivity in density-dependent flow and transport models from surface ERT-derived mass fraction. In the course of this study, geophysical inversion was performed by using a smoothness constraint Tikhonov approach, whereas the hydrological inversion was performed using a gradient-based Levenberg-Marquardt algorithm. Two synthetic benchmarks were tested. They represent a pumping experiment in a homogeneous and heterogeneous coastal aquifer, respectively. These simulations demonstrated that only the lower salt mass fraction of the seawater-freshwater transition zone can be recovered for different times. This ability has here been quantified in terms of cumulative sensitivity and our study has further demonstrated that the mismatch between the targeted and the recovered salt mass fraction occurs from a certain threshold. We were additionally able to explore the capability of sensitivity-filtered ERT images using ground surface data only to recover (in both synthetic cases) the hydraulic conductivity while the dispersivity is more difficult to estimate. We attribute the latter mainly to the lack of ERT-derived data at depth (where resolution is poorer) as well as to the smoothing effect of the ERT inversion.
000172070 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000172070 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172070 7001_ $$0P:(DE-HGF)0$$aNguyen, F.$$b1
000172070 7001_ $$0P:(DE-HGF)0$$aKemna, A.$$b2
000172070 7001_ $$0P:(DE-HGF)0$$aAntonsson, A.$$b3
000172070 7001_ $$0P:(DE-HGF)0$$aEngesgaard, P.$$b4
000172070 773__ $$0PERI:(DE-600)2029553-4$$a10.1002/2013WR014020$$gVol. 50, no. 8, p. 6828 - 6849$$n8$$p6828 - 6849$$tWater resources research$$v50$$x0043-1397$$y2014
000172070 8564_ $$uhttps://juser.fz-juelich.de/record/172070/files/FZJ-2014-05614.pdf$$yOpenAccess
000172070 909CO $$ooai:juser.fz-juelich.de:172070$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000172070 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172070 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000172070 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000172070 9141_ $$y2014
000172070 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172070 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000172070 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172070 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172070 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172070 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172070 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172070 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172070 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000172070 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172070 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172070 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172070 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000172070 980__ $$ajournal
000172070 980__ $$aVDB
000172070 980__ $$aUNRESTRICTED
000172070 980__ $$aI:(DE-Juel1)IBG-3-20101118
000172070 9801_ $$aFullTexts