000172097 001__ 172097
000172097 005__ 20210129214356.0
000172097 0247_ $$2doi$$a10.3390/rs6109775
000172097 0247_ $$2Handle$$a2128/8071
000172097 0247_ $$2WOS$$aWOS:000344458000029
000172097 037__ $$aFZJ-2014-05640
000172097 041__ $$aEnglish
000172097 082__ $$a620
000172097 1001_ $$0P:(DE-Juel1)145477$$aAhrends, Hella$$b0$$eCorresponding Author
000172097 245__ $$aDiurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery
000172097 260__ $$aBasel$$bMDPI$$c2014
000172097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s172097
000172097 3367_ $$2DataCite$$aOutput Types/Journal article
000172097 3367_ $$00$$2EndNote$$aJournal Article
000172097 3367_ $$2BibTeX$$aARTICLE
000172097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172097 3367_ $$2DRIVER$$aarticle
000172097 520__ $$aThe latent heat flux, one of the key components of the surface energy balance, can be inferred from remotely sensed thermal infrared data. However, discrepancies between modeled and observed evapotranspiration are large. Thermal cameras might provide a suitable tool for model evaluation under variable atmospheric conditions. Here, we evaluate the results from the Penman-Monteith, surface energy balance and Bowen ratio approaches, which estimate the diurnal course of latent heat fluxes at a ripe winter wheat stand using measured and modeled temperatures. Under overcast conditions, the models perform similarly, and radiometric image temperatures are linearly correlated with the inverted aerodynamic temperature. During clear sky conditions, the temperature of the wheat ear layer could be used to predict daytime turbulent fluxes (root mean squared error and mean absolute error: 20–35 W∙m−2, r2: 0.76–0.88), whereas spatially-averaged temperatures caused underestimation of pre-noon and overestimation of afternoon fluxes. Errors are dependent on the models’ ability to simulate diurnal hysteresis effects and are largest during intermittent clouds, due to the discrepancy between the timing of image capture and the time needed for the leaf-air-temperature gradient to adapt to changes in solar radiation. During such periods, we suggest using modeled surface temperatures for temporal upscaling and the validation of image data. 
000172097 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x0
000172097 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172097 7001_ $$0P:(DE-HGF)0$$aHaseneder-Lind, Rainer$$b1
000172097 7001_ $$0P:(DE-HGF)0$$aSchween, Jan$$b2
000172097 7001_ $$0P:(DE-HGF)0$$aCrewell, Susanne$$b3
000172097 7001_ $$0P:(DE-HGF)0$$aStadler, Anja$$b4
000172097 7001_ $$0P:(DE-Juel1)129388$$aRascher, Uwe$$b5$$ufzj
000172097 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs6109775$$gVol. 6, no. 10, p. 9775 - 9801$$n10$$p9775 - 9801$$tRemote sensing$$v6$$x2072-4292$$y2014
000172097 8564_ $$uhttp://www.mdpi.com/2072-4292/6/10/9775
000172097 8564_ $$uhttps://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.pdf$$yOpenAccess
000172097 8564_ $$uhttps://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000172097 8564_ $$uhttps://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000172097 8564_ $$uhttps://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000172097 909CO $$ooai:juser.fz-juelich.de:172097$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000172097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172097 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vKey Technologies for the Bioeconomy$$x0
000172097 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF2-89582$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x0
000172097 9141_ $$y2014
000172097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172097 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000172097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172097 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000172097 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172097 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172097 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172097 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172097 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000172097 980__ $$ajournal
000172097 980__ $$aVDB
000172097 980__ $$aUNRESTRICTED
000172097 980__ $$aFullTexts
000172097 980__ $$aI:(DE-Juel1)IBG-2-20101118
000172097 9801_ $$aFullTexts