001     172097
005     20210129214356.0
024 7 _ |a 10.3390/rs6109775
|2 doi
024 7 _ |a 2128/8071
|2 Handle
024 7 _ |a WOS:000344458000029
|2 WOS
037 _ _ |a FZJ-2014-05640
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Ahrends, Hella
|0 P:(DE-Juel1)145477
|b 0
|e Corresponding Author
245 _ _ |a Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery
260 _ _ |a Basel
|c 2014
|b MDPI
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 172097
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The latent heat flux, one of the key components of the surface energy balance, can be inferred from remotely sensed thermal infrared data. However, discrepancies between modeled and observed evapotranspiration are large. Thermal cameras might provide a suitable tool for model evaluation under variable atmospheric conditions. Here, we evaluate the results from the Penman-Monteith, surface energy balance and Bowen ratio approaches, which estimate the diurnal course of latent heat fluxes at a ripe winter wheat stand using measured and modeled temperatures. Under overcast conditions, the models perform similarly, and radiometric image temperatures are linearly correlated with the inverted aerodynamic temperature. During clear sky conditions, the temperature of the wheat ear layer could be used to predict daytime turbulent fluxes (root mean squared error and mean absolute error: 20–35 W∙m−2, r2: 0.76–0.88), whereas spatially-averaged temperatures caused underestimation of pre-noon and overestimation of afternoon fluxes. Errors are dependent on the models’ ability to simulate diurnal hysteresis effects and are largest during intermittent clouds, due to the discrepancy between the timing of image capture and the time needed for the leaf-air-temperature gradient to adapt to changes in solar radiation. During such periods, we suggest using modeled surface temperatures for temporal upscaling and the validation of image data.
536 _ _ |0 G:(DE-HGF)POF2-89582
|f POF II T
|x 0
|c POF2-89582
|a 89582 - Plant Science (POF2-89582)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Haseneder-Lind, Rainer
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schween, Jan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Crewell, Susanne
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stadler, Anja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 5
|u fzj
773 _ _ |a 10.3390/rs6109775
|g Vol. 6, no. 10, p. 9775 - 9801
|0 PERI:(DE-600)2513863-7
|n 10
|p 9775 - 9801
|t Remote sensing
|v 6
|y 2014
|x 2072-4292
856 4 _ |u http://www.mdpi.com/2072-4292/6/10/9775
856 4 _ |u https://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172097/files/FZJ-2014-05640.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172097
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129388
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Key Technologies for the Bioeconomy
|x 0
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF2-89582
|x 0
|v Plant Science
|0 G:(DE-HGF)POF2-89582
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21