000172101 001__ 172101
000172101 005__ 20210129214356.0
000172101 0247_ $$2doi$$a10.1111/pce.12399
000172101 0247_ $$2ISSN$$a0140-7791
000172101 0247_ $$2ISSN$$a1365-3040
000172101 0247_ $$2WOS$$aWOS:000349994600006
000172101 0247_ $$2altmetric$$aaltmetric:2487698
000172101 0247_ $$2pmid$$apmid:24995994
000172101 037__ $$aFZJ-2014-05644
000172101 041__ $$aEnglish
000172101 082__ $$a570
000172101 1001_ $$0P:(DE-HGF)0$$aPEUKE, ANDREAS D.$$b0$$eCorresponding Author
000172101 245__ $$aPhloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots
000172101 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2015
000172101 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1427450120_8870
000172101 3367_ $$2DataCite$$aOutput Types/Journal article
000172101 3367_ $$00$$2EndNote$$aJournal Article
000172101 3367_ $$2BibTeX$$aARTICLE
000172101 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172101 3367_ $$2DRIVER$$aarticle
000172101 520__ $$aAnoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non-invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ13C in leaves, roots and phloem saps were determined.Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment.Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.
000172101 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000172101 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172101 7001_ $$0P:(DE-HGF)0$$aGESSLER, ARTHUR$$b1
000172101 7001_ $$0P:(DE-HGF)0$$aTRUMBORE, SUSAN$$b2
000172101 7001_ $$0P:(DE-Juel1)129422$$aWindt, Carel$$b3$$ufzj
000172101 7001_ $$0P:(DE-HGF)0$$aHOMAN, NATALIA$$b4
000172101 7001_ $$0P:(DE-HGF)0$$aGERKEMA, EDO$$b5
000172101 7001_ $$0P:(DE-HGF)0$$aVAN AS, HENK$$b6
000172101 773__ $$0PERI:(DE-600)2020843-1$$a10.1111/pce.12399$$gp. n/a - n/a$$n3$$p433–447$$tPlant, cell & environment$$v38$$x0140-7791$$y2015
000172101 8564_ $$uhttps://juser.fz-juelich.de/record/172101/files/pce12399.pdf$$yRestricted
000172101 8564_ $$uhttps://juser.fz-juelich.de/record/172101/files/pce12399.pdf?subformat=pdfa$$xpdfa$$yRestricted
000172101 909CO $$ooai:juser.fz-juelich.de:172101$$pVDB
000172101 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129422$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172101 9130_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF2-89580$$2G:(DE-HGF)POF3-890$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000172101 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000172101 9141_ $$y2015
000172101 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172101 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172101 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172101 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172101 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172101 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172101 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172101 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172101 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172101 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000172101 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172101 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000172101 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000172101 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000172101 980__ $$ajournal
000172101 980__ $$aVDB
000172101 980__ $$aI:(DE-Juel1)IBG-2-20101118
000172101 980__ $$aUNRESTRICTED