000172110 001__ 172110 000172110 005__ 20240625095113.0 000172110 0247_ $$2doi$$a10.1111/febs.12934 000172110 0247_ $$2ISSN$$a0014-2956 000172110 0247_ $$2ISSN$$a1432-1033 000172110 0247_ $$2ISSN$$a1742-464X 000172110 0247_ $$2ISSN$$a1742-4658 000172110 0247_ $$2WOS$$aWOS:000341721000014 000172110 0247_ $$2altmetric$$aaltmetric:2585967 000172110 0247_ $$2pmid$$apmid:25039600 000172110 037__ $$aFZJ-2014-05653 000172110 041__ $$aEnglish 000172110 082__ $$a540 000172110 1001_ $$0P:(DE-HGF)0$$aStanyon, Helen F.$$b0 000172110 245__ $$aDeveloping predictive rules for coordination geometry from visible circular dichroism of Copper(II) and Nickel(II) ions in histidine and amide main-chain complexes 000172110 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014 000172110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435742647_1776 000172110 3367_ $$2DataCite$$aOutput Types/Journal article 000172110 3367_ $$00$$2EndNote$$aJournal Article 000172110 3367_ $$2BibTeX$$aARTICLE 000172110 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000172110 3367_ $$2DRIVER$$aarticle 000172110 520__ $$aCircular Dichroism (CD) spectroscopy in the visible region (Vis-CD) is a powerful technique to study metal-protein interactions. It can resolve individual d–d electronic transitions as separate bands and is particularly sensitive to the chiral environment of the transition metals. Modern quantum chemical methods enable CD spectra calculations from which, along with direct comparison with the experimental CD data, the conformations and the stereochemistry of the metal-protein complexes can be assigned. However, a clear understanding of the observed spectra and the molecular configuration is largely lacking. In this study, we compare the experimental and computed Vis-CD spectra of Cu2+-loaded model peptides in square-planar complexes. We find that the spectra can readily discriminate the coordination pattern of Cu2+ bound exclusively to main-chain amides from that involving both main-chain amides and a side-chain (i.e. histidine side chain). Based on the results, we develop a set of empirical rules that relates the appearance of particular Vis-CD spectral features to the conformation of the complex. These rules can be used to gain insight into coordination geometries of other Cu2+ or Ni2+-protein complexes. 000172110 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000172110 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000172110 7001_ $$0P:(DE-HGF)0$$aCong, Xiaojing$$b1 000172110 7001_ $$0P:(DE-HGF)0$$aChen, Yan$$b2 000172110 7001_ $$0P:(DE-HGF)0$$aShahidullah, Nabeela$$b3 000172110 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b4$$ufzj 000172110 7001_ $$0P:(DE-Juel1)146008$$aDreyer, Jens$$b5$$ufzj 000172110 7001_ $$0P:(DE-HGF)0$$aPapamokos, George$$b6 000172110 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b7$$ufzj 000172110 7001_ $$0P:(DE-HGF)0$$aViles, John H.$$b8$$eCorresponding Author 000172110 773__ $$0PERI:(DE-600)2172518-4$$a10.1111/febs.12934$$gp. n/a - n/a$$n17$$p3945 - 3954$$tThe @FEBS journal$$v281$$x1742-464X$$y2014 000172110 8564_ $$uhttps://juser.fz-juelich.de/record/172110/files/FZJ-2014-05653.pdf$$yRestricted 000172110 909CO $$ooai:juser.fz-juelich.de:172110$$pVDB 000172110 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000172110 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000172110 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000172110 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000172110 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000172110 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000172110 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000172110 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000172110 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences 000172110 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000172110 9141_ $$y2014 000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000172110 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b1$$kGRS 000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146008$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000172110 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b6$$kGRS 000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b7$$kFZJ 000172110 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000172110 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1 000172110 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000172110 920__ $$lyes 000172110 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000172110 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000172110 9201_ $$0I:(DE-588b)1026307295$$kGRS$$lGerman Research School for Simulation Sciences$$x2 000172110 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3 000172110 980__ $$ajournal 000172110 980__ $$aVDB 000172110 980__ $$aI:(DE-Juel1)IAS-5-20120330 000172110 980__ $$aI:(DE-Juel1)INM-9-20140121 000172110 980__ $$aI:(DE-588b)1026307295 000172110 980__ $$aI:(DE-Juel1)JSC-20090406 000172110 980__ $$aUNRESTRICTED 000172110 981__ $$aI:(DE-Juel1)INM-9-20140121 000172110 981__ $$aI:(DE-Juel1)JSC-20090406