000172110 001__ 172110
000172110 005__ 20240625095113.0
000172110 0247_ $$2doi$$a10.1111/febs.12934
000172110 0247_ $$2ISSN$$a0014-2956
000172110 0247_ $$2ISSN$$a1432-1033
000172110 0247_ $$2ISSN$$a1742-464X
000172110 0247_ $$2ISSN$$a1742-4658
000172110 0247_ $$2WOS$$aWOS:000341721000014
000172110 0247_ $$2altmetric$$aaltmetric:2585967
000172110 0247_ $$2pmid$$apmid:25039600
000172110 037__ $$aFZJ-2014-05653
000172110 041__ $$aEnglish
000172110 082__ $$a540
000172110 1001_ $$0P:(DE-HGF)0$$aStanyon, Helen F.$$b0
000172110 245__ $$aDeveloping predictive rules for coordination geometry from visible circular dichroism of Copper(II) and Nickel(II) ions in histidine and amide main-chain complexes
000172110 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2014
000172110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435742647_1776
000172110 3367_ $$2DataCite$$aOutput Types/Journal article
000172110 3367_ $$00$$2EndNote$$aJournal Article
000172110 3367_ $$2BibTeX$$aARTICLE
000172110 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172110 3367_ $$2DRIVER$$aarticle
000172110 520__ $$aCircular Dichroism (CD) spectroscopy in the visible region (Vis-CD) is a powerful technique to study metal-protein interactions. It can resolve individual d–d electronic transitions as separate bands and is particularly sensitive to the chiral environment of the transition metals. Modern quantum chemical methods enable CD spectra calculations from which, along with direct comparison with the experimental CD data, the conformations and the stereochemistry of the metal-protein complexes can be assigned. However, a clear understanding of the observed spectra and the molecular configuration is largely lacking. In this study, we compare the experimental and computed Vis-CD spectra of Cu2+-loaded model peptides in square-planar complexes. We find that the spectra can readily discriminate the coordination pattern of Cu2+ bound exclusively to main-chain amides from that involving both main-chain amides and a side-chain (i.e. histidine side chain). Based on the results, we develop a set of empirical rules that relates the appearance of particular Vis-CD spectral features to the conformation of the complex. These rules can be used to gain insight into coordination geometries of other Cu2+ or Ni2+-protein complexes.
000172110 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000172110 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172110 7001_ $$0P:(DE-HGF)0$$aCong, Xiaojing$$b1
000172110 7001_ $$0P:(DE-HGF)0$$aChen, Yan$$b2
000172110 7001_ $$0P:(DE-HGF)0$$aShahidullah, Nabeela$$b3
000172110 7001_ $$0P:(DE-Juel1)145921$$aRossetti, Giulia$$b4$$ufzj
000172110 7001_ $$0P:(DE-Juel1)146008$$aDreyer, Jens$$b5$$ufzj
000172110 7001_ $$0P:(DE-HGF)0$$aPapamokos, George$$b6
000172110 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b7$$ufzj
000172110 7001_ $$0P:(DE-HGF)0$$aViles, John H.$$b8$$eCorresponding Author
000172110 773__ $$0PERI:(DE-600)2172518-4$$a10.1111/febs.12934$$gp. n/a - n/a$$n17$$p3945 - 3954$$tThe @FEBS journal$$v281$$x1742-464X$$y2014
000172110 8564_ $$uhttps://juser.fz-juelich.de/record/172110/files/FZJ-2014-05653.pdf$$yRestricted
000172110 909CO $$ooai:juser.fz-juelich.de:172110$$pVDB
000172110 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172110 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172110 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172110 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172110 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172110 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172110 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172110 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172110 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000172110 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172110 9141_ $$y2014
000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172110 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b1$$kGRS
000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145921$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)146008$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172110 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b6$$kGRS
000172110 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000172110 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000172110 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000172110 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000172110 920__ $$lyes
000172110 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000172110 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000172110 9201_ $$0I:(DE-588b)1026307295$$kGRS$$lGerman Research School for Simulation Sciences$$x2
000172110 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x3
000172110 980__ $$ajournal
000172110 980__ $$aVDB
000172110 980__ $$aI:(DE-Juel1)IAS-5-20120330
000172110 980__ $$aI:(DE-Juel1)INM-9-20140121
000172110 980__ $$aI:(DE-588b)1026307295
000172110 980__ $$aI:(DE-Juel1)JSC-20090406
000172110 980__ $$aUNRESTRICTED
000172110 981__ $$aI:(DE-Juel1)INM-9-20140121
000172110 981__ $$aI:(DE-Juel1)JSC-20090406