001     172110
005     20240625095113.0
024 7 _ |a 10.1111/febs.12934
|2 doi
024 7 _ |a 0014-2956
|2 ISSN
024 7 _ |a 1432-1033
|2 ISSN
024 7 _ |a 1742-464X
|2 ISSN
024 7 _ |a 1742-4658
|2 ISSN
024 7 _ |a WOS:000341721000014
|2 WOS
024 7 _ |a altmetric:2585967
|2 altmetric
024 7 _ |a pmid:25039600
|2 pmid
037 _ _ |a FZJ-2014-05653
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-HGF)0
|a Stanyon, Helen F.
|b 0
245 _ _ |a Developing predictive rules for coordination geometry from visible circular dichroism of Copper(II) and Nickel(II) ions in histidine and amide main-chain complexes
260 _ _ |a Oxford [u.a.]
|b Wiley-Blackwell
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1435742647_1776
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Circular Dichroism (CD) spectroscopy in the visible region (Vis-CD) is a powerful technique to study metal-protein interactions. It can resolve individual d–d electronic transitions as separate bands and is particularly sensitive to the chiral environment of the transition metals. Modern quantum chemical methods enable CD spectra calculations from which, along with direct comparison with the experimental CD data, the conformations and the stereochemistry of the metal-protein complexes can be assigned. However, a clear understanding of the observed spectra and the molecular configuration is largely lacking. In this study, we compare the experimental and computed Vis-CD spectra of Cu2+-loaded model peptides in square-planar complexes. We find that the spectra can readily discriminate the coordination pattern of Cu2+ bound exclusively to main-chain amides from that involving both main-chain amides and a side-chain (i.e. histidine side chain). Based on the results, we develop a set of empirical rules that relates the appearance of particular Vis-CD spectral features to the conformation of the complex. These rules can be used to gain insight into coordination geometries of other Cu2+ or Ni2+-protein complexes.
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-HGF)0
|a Cong, Xiaojing
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Chen, Yan
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Shahidullah, Nabeela
|b 3
700 1 _ |0 P:(DE-Juel1)145921
|a Rossetti, Giulia
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)146008
|a Dreyer, Jens
|b 5
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Papamokos, George
|b 6
700 1 _ |0 P:(DE-Juel1)145614
|a Carloni, Paolo
|b 7
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Viles, John H.
|b 8
|e Corresponding Author
773 _ _ |0 PERI:(DE-600)2172518-4
|a 10.1111/febs.12934
|g p. n/a - n/a
|n 17
|p 3945 - 3954
|t The @FEBS journal
|v 281
|x 1742-464X
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/172110/files/FZJ-2014-05653.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172110
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 1
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145921
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)146008
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)1026307295
|6 P:(DE-HGF)0
|a German Research School for Simulation Sciences
|b 6
|k GRS
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145614
|a Forschungszentrum Jülich GmbH
|b 7
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 2 _ |0 G:(DE-HGF)POF3-574
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Theory, modelling and simulation
|x 1
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-588b)1026307295
|k GRS
|l German Research School for Simulation Sciences
|x 2
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-588b)1026307295
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-9-20140121
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21