001     172155
005     20240712084455.0
024 7 _ |a 10.1109/JPHOTOV.2014.2311233
|2 doi
024 7 _ |a WOS:000335226400003
|2 WOS
037 _ _ |a FZJ-2014-05665
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Meier, Matthias
|0 P:(DE-Juel1)130830
|b 0
|e Corresponding Author
245 _ _ |a Fabrication of Light-Scattering Multiscale Textures by Nanoimprinting for the Application to Thin-Film Silicon Solar Cells
260 _ _ |a New York, NY
|c 2014
|b IEEE
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1415701698_21364
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a In this study, nanoimprint processing was used to realize various multiscale textures on glass substrates for application in thin-film photovoltaic devices. The multiscale textures are formed by a combination of large and small features, which proofed to be beneficial for light trapping in silicon thin-film solar cells. Two approaches for the fabrication of multiscale textures are presented in this study. In the first approach, the multiscale texture is realized at the lacquer/transparent conductive oxide (TCO) interface, and in the second approach, the multiscale texture is realized at the TCO/Si interface. Various types of multiscale textures were fabricated and tested in microcrystalline thin-film silicon solar cells in p-i-n configuration to identify the optimal texture for the light management. It was found that the best light-scattering multiscale texture was realized using an imprint-textured glass substrate, which contains large craters, in combination with HF-etched TCO (ZnO:Al), which contains small features, on top of the imprint. With this structure (of the second approach), the short-circuit current density of the solar cell devices was improved by 0.6 mA/cm2 using multiscale textures realized by nanoimprint processing.
536 _ _ |a 111 - Thin Film Photovoltaics (POF2-111)
|0 G:(DE-HGF)POF2-111
|c POF2-111
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Paetzold, U. W.
|0 P:(DE-Juel1)130282
|b 1
|u fzj
700 1 _ |a Ghosh, M.
|0 P:(DE-Juel1)151168
|b 2
|u fzj
700 1 _ |a Zhang, W.
|0 P:(DE-Juel1)130310
|b 3
700 1 _ |a Merdzhanova, T.
|0 P:(DE-Juel1)130268
|b 4
|u fzj
700 1 _ |a Jost, G.
|0 P:(DE-Juel1)139528
|b 5
|u fzj
700 1 _ |a Sommer, N.
|0 P:(DE-Juel1)145392
|b 6
|u fzj
700 1 _ |a Michard, S.
|0 P:(DE-Juel1)141652
|b 7
|u fzj
700 1 _ |a Gordijn, A.
|0 P:(DE-Juel1)130242
|b 8
|u fzj
773 _ _ |a 10.1109/JPHOTOV.2014.2311233
|0 PERI:(DE-600)2585714-9
|n 3
|p 772-777
|t IEEE journal of photovoltaics
|v 4
|y 2014
|x 2156-3381
856 4 _ |u https://juser.fz-juelich.de/record/172155/files/FZJ-2014-05665.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172155
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130830
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130282
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151168
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)139528
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145392
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)141652
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130242
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Erneuerbare Energien
|x 0
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF2-110
|0 G:(DE-HGF)POF2-111
|2 G:(DE-HGF)POF2-100
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21