000172159 001__ 172159
000172159 005__ 20210129214400.0
000172159 0247_ $$2doi$$a10.1371/journal.pone.0102425
000172159 0247_ $$2Handle$$a2128/8080
000172159 0247_ $$2WOS$$aWOS:000339378400096
000172159 0247_ $$2altmetric$$aaltmetric:3757469
000172159 0247_ $$2pmid$$apmid:25014207
000172159 037__ $$aFZJ-2014-05669
000172159 041__ $$aEnglish
000172159 082__ $$a500
000172159 1001_ $$0P:(DE-HGF)0$$aZhang, Si-Cai$$b0
000172159 245__ $$aLiposome Reconstitution and Modulation of Recombinant Prenylated Human Rac1 by GEFs, GDI1 and Pak1
000172159 260__ $$aLawrence, Kan.$$bPLoS$$c2014
000172159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417088355_32597
000172159 3367_ $$2DataCite$$aOutput Types/Journal article
000172159 3367_ $$00$$2EndNote$$aJournal Article
000172159 3367_ $$2BibTeX$$aARTICLE
000172159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172159 3367_ $$2DRIVER$$aarticle
000172159 520__ $$aSmall Rho GTPases are well known to regulate a variety of cellular processes by acting as molecular switches. The regulatory function of Rho GTPases is critically dependent on their posttranslational modification at the carboxyl terminus by isoprenylation and association with proper cellular membranes. Despite numerous studies, the mechanisms of recycling and functional integration of Rho GTPases at the biological membranes are largely unclear. In this study, prenylated human Rac1, a prominent member of the Rho family, was purified in large amount from baculovirus-infected Spodoptera frugiperda insect cells using a systematic detergent screening. In contrast to non-prenylated human Rac1 purified from Escherichia coli, prenylated Rac1 from insect cells was able to associate with synthetic liposomes and to bind Rho-specific guanine nucleotide dissociation inhibitor 1 (GDI1). Subsequent liposome reconstitution experiments revealed that GDI1 efficiently extracts Rac1 from liposomes preferentially in the inactive GDP-bound state. The extraction was prevented when Rac1 was activated to its GTP-bound state by Rac-specific guanine nucleotide exchange factors (GEFs), such as Vav2, Dbl, Tiam1, P-Rex1 and TrioN, and bound by the downstream effector Pak1. We found that dissociation of Rac1-GDP from its complex with GDI1 strongly correlated with two distinct activities of especially Dbl and Tiam1, including liposome association and the GDP/GTP exchange. Taken together, our results provided first detailed insights into the advantages of the in vitro liposome-based reconstitution system to study both the integration of the signal transducing protein complexes and the mechanisms of regulation and signaling of small GTPases at biological membranes.
000172159 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000172159 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172159 7001_ $$0P:(DE-Juel1)145165$$aGremer, Lothar$$b1
000172159 7001_ $$0P:(DE-Juel1)132002$$aHeise, Henrike$$b2
000172159 7001_ $$0P:(DE-HGF)0$$aJanning, Petra$$b3
000172159 7001_ $$0P:(DE-HGF)0$$aShymanets, Aliaksei$$b4
000172159 7001_ $$0P:(DE-HGF)0$$aCirstea, Ion C.$$b5
000172159 7001_ $$0P:(DE-HGF)0$$aKrause, Eberhard$$b6
000172159 7001_ $$0P:(DE-HGF)0$$aNürnberg, Bernd$$b7
000172159 7001_ $$0P:(DE-HGF)0$$aAhmadian, Mohammad Reza$$b8$$eCorresponding Author
000172159 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0102425$$gVol. 9, no. 7, p. e102425 -$$n7$$pe102425$$tPLoS one$$v9$$x1932-6203$$y2014
000172159 8564_ $$uhttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0102425
000172159 8564_ $$uhttps://juser.fz-juelich.de/record/172159/files/FZJ-2014-05669.pdf$$yOpenAccess
000172159 909CO $$ooai:juser.fz-juelich.de:172159$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000172159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145165$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172159 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132002$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172159 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$x0
000172159 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000172159 9141_ $$y2014
000172159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172159 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172159 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000172159 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000172159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172159 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000172159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172159 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172159 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172159 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172159 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172159 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172159 920__ $$lyes
000172159 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000172159 9801_ $$aFullTexts
000172159 980__ $$ajournal
000172159 980__ $$aVDB
000172159 980__ $$aI:(DE-Juel1)ICS-6-20110106
000172159 980__ $$aUNRESTRICTED
000172159 980__ $$aFullTexts
000172159 981__ $$aI:(DE-Juel1)IBI-7-20200312