000172160 001__ 172160
000172160 005__ 20250129094157.0
000172160 0247_ $$2doi$$a10.1063/1.4898380
000172160 0247_ $$2WOS$$aWOS:000344847600079
000172160 0247_ $$2Handle$$a2128/19013
000172160 037__ $$aFZJ-2014-05670
000172160 041__ $$aEnglish
000172160 082__ $$a540
000172160 1001_ $$0P:(DE-HGF)0$$avan der Loop, Tibert H.$$b0
000172160 245__ $$aStructure and dynamics of water in nanoscopic spheres and tubes
000172160 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014
000172160 3367_ $$2DRIVER$$aarticle
000172160 3367_ $$2DataCite$$aOutput Types/Journal article
000172160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1435745630_3091
000172160 3367_ $$2BibTeX$$aARTICLE
000172160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172160 3367_ $$00$$2EndNote$$aJournal Article
000172160 520__ $$aWe study the reorientation dynamics of liquid water confined in nanometer-sized reverse micelles of spherical and cylindrical shape. The size and shape of the micelles are characterized in detail using small-angle x-ray scattering, and the reorientation dynamics of the water within the micelles is investigated using GHz dielectric relaxation spectroscopy and polarization-resolved infrared pump-probe spectroscopy on the OD-stretch mode of dilute HDO:H2O mixtures. We find that the GHz dielectric response of both the spherical and cylindrical reverse micelles can be well described as a sum of contributions from the surfactant, the water at the inner surface of the reversed micelles, and the water in the core of the micelles. The Debye relaxation time of the core water increases from the bulk value τH2O of 8.2 ± 0.1 ps for the largest reverse micelles with a radius of 3.2 nm to 16.0 ± 0.4 ps for the smallest micelles with a radius of 0.7 nm. For the nano-spheres the dielectric response of the water is approximately ∼6 times smaller than expected from the water volume fraction and the bulk dielectric relaxation of water. We find that the dielectric response of nano-spheres is more attenuated than that of nano-tubes of identical composition (water-surfactant ratio), whereas the reorientation dynamics of the water hydroxyl groups is identical for the two geometries. We attribute the attenuation of the dielectric response compared to bulk water to a local anti-parallel ordering of the molecular dipole moments. The difference in attenuation between nano-spheres and nano-cylinders indicates that the anti-parallel ordering of the water dipoles is more pronounced upon spherical than upon cylindrical nanoconfinement
000172160 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000172160 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x1
000172160 536__ $$0G:(DE-HGF)POF2-542$$a542 - Neutrons (POF2-542)$$cPOF2-542$$fPOF II$$x2
000172160 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000172160 7001_ $$0P:(DE-HGF)0$$aOttosson, Niklas$$b1
000172160 7001_ $$0P:(DE-HGF)0$$aLotze, Stefan$$b2
000172160 7001_ $$0P:(DE-Juel1)130754$$aKentzinger, Emmanuel$$b3
000172160 7001_ $$0P:(DE-HGF)0$$aVad, Thomas$$b4
000172160 7001_ $$0P:(DE-Juel1)130932$$aSager, Wiebke$$b5$$eCorresponding Author
000172160 7001_ $$0P:(DE-HGF)0$$aBakker, Huib J.$$b6
000172160 7001_ $$0P:(DE-HGF)0$$aWoutersen, Sander$$b7
000172160 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4898380$$p18C535$$tThe @journal of chemical physics$$v141$$x0021-9606$$y2014
000172160 8564_ $$uhttps://juser.fz-juelich.de/record/172160/files/FZJ-2014-05670.pdf$$yOpenAccess
000172160 909CO $$ooai:juser.fz-juelich.de:172160$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000172160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130754$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172160 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130932$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172160 9132_ $$0G:(DE-HGF)POF3-424$$1G:(DE-HGF)POF3-420$$2G:(DE-HGF)POF3-400$$aDE-HGF$$bForschungsbereich Luftfahrt, Raumfahrt und Verkehr$$lRaumfahrt$$vResearch under Space Conditions$$x0
000172160 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000172160 9132_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x2
000172160 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000172160 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000172160 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000172160 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x1
000172160 9131_ $$0G:(DE-HGF)POF2-542$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vNeutrons$$x2
000172160 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x3
000172160 9141_ $$y2014
000172160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172160 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172160 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172160 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172160 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172160 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172160 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172160 920__ $$lyes
000172160 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000172160 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000172160 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x2
000172160 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000172160 9801_ $$aFullTexts
000172160 980__ $$ajournal
000172160 980__ $$aVDB
000172160 980__ $$aUNRESTRICTED
000172160 980__ $$aI:(DE-Juel1)PGI-5-20110106
000172160 980__ $$aI:(DE-82)080009_20140620
000172160 980__ $$aI:(DE-Juel1)PGI-4-20110106
000172160 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000172160 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000172160 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000172160 981__ $$aI:(DE-Juel1)PGI-4-20110106
000172160 981__ $$aI:(DE-Juel1)JCNS-2-20110106