000172211 001__ 172211
000172211 005__ 20220930130034.0
000172211 0247_ $$2doi$$a10.1016/j.bpj.2014.08.015
000172211 0247_ $$2ISSN$$a0006-3495
000172211 0247_ $$2ISSN$$a1542-0086
000172211 0247_ $$2WOS$$aWOS:000343682700010
000172211 0247_ $$2altmetric$$aaltmetric:3757170
000172211 0247_ $$2pmid$$apmid:25418165
000172211 037__ $$aFZJ-2014-05700
000172211 082__ $$a570
000172211 1001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b0$$eCorresponding Author$$ufzj
000172211 245__ $$aDomain and Interdomain Energetics Underlying Gating in Shaker-Type Kv Channels
000172211 260__ $$aNew York, NY$$bRockefeller Univ. Press$$c2014
000172211 3367_ $$2DRIVER$$aarticle
000172211 3367_ $$2DataCite$$aOutput Types/Journal article
000172211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563263629_3032
000172211 3367_ $$2BibTeX$$aARTICLE
000172211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172211 3367_ $$00$$2EndNote$$aJournal Article
000172211 520__ $$aTo understand gating events with a time-base many orders of magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type K V channels, a multiscale physical model is constructed from the experimentally well-characterized voltage sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these result allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order of magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.
000172211 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000172211 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x1
000172211 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
000172211 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172211 7001_ $$0P:(DE-HGF)0$$aGillespie, Dirk$$b1
000172211 7001_ $$0P:(DE-HGF)0$$aRoth, Roland$$b2
000172211 7001_ $$0P:(DE-HGF)0$$aNonner, Wolfgang$$b3
000172211 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2014.08.015$$gVol. 107, no. 8, p. 1841 - 1852$$n8$$p1841 - 1852$$tBiophysical journal$$v107$$x0006-3495$$y2014
000172211 8564_ $$uhttps://juser.fz-juelich.de/record/172211/files/FZJ-2014-05700.pdf$$yRestricted
000172211 8767_ $$92014-09-16$$d2014-09-17$$ePage charges$$jZahlung erfolgt$$zUSD 1.140,-
000172211 8767_ $$92014-09-16$$d2014-09-17$$eColour charges$$jZahlung erfolgt$$zUSD 250,-
000172211 909CO $$ooai:juser.fz-juelich.de:172211$$pOpenAPC$$pVDB$$popenCost
000172211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172211 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000172211 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000172211 9141_ $$y2014
000172211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172211 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172211 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172211 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172211 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000172211 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172211 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172211 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000172211 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000172211 980__ $$ajournal
000172211 980__ $$aVDB
000172211 980__ $$aI:(DE-Juel1)JSC-20090406
000172211 980__ $$aI:(DE-82)080012_20140620
000172211 980__ $$aAPC
000172211 980__ $$aUNRESTRICTED
000172211 9801_ $$aAPC