000172220 001__ 172220
000172220 005__ 20240711101515.0
000172220 0247_ $$2doi$$a10.1016/j.ijhydene.2014.09.018
000172220 0247_ $$2ISSN$$a0360-3199
000172220 0247_ $$2ISSN$$a1879-3487
000172220 0247_ $$2WOS$$aWOS:000347576200086
000172220 037__ $$aFZJ-2014-05709
000172220 082__ $$a660
000172220 1001_ $$0P:(DE-Juel1)130718$$aHolderer, O.$$b0$$eCorresponding Author$$ufzj
000172220 245__ $$aObserving proton motion on the nanoscale in polymeric electrolyte membranes with quasielastic neutron scattering
000172220 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2014
000172220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1422428326_8065
000172220 3367_ $$2DataCite$$aOutput Types/Journal article
000172220 3367_ $$00$$2EndNote$$aJournal Article
000172220 3367_ $$2BibTeX$$aARTICLE
000172220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172220 3367_ $$2DRIVER$$aarticle
000172220 520__ $$aThe mechanism of proton conductivity in high temperature polymer electrolyte fuel cells (HT-PEFCs) has been investigated with macroscopic conductivity measurements and on a microscopic scale with quasielastic neutron scattering techniques. Polybenzimidazole membranes, which are used in HT-PEFCs, are doped with phosphoric acid (PA) to achieve the desired proton conductivity. Neutron spin echo experiments showed that the polymer matrix is very rigid incoherent scattering experiments, but incoherent scattering revealed rather fast diffusion processes, compatible with macroscopic conductivity measurements. The measured diffusion is faster than anticipated from the conductivity of a phosphoric acid doped PBI membrane, but slower than that expected for pure phosphoric acid. Over larger distances the fractal polymer membrane network slows down the locally fast diffusion to the macroscopic values. With elastic fixed window scans on a backscattering spectrometer an activation energy of 7.6 kJ/mol is obtained at typical conditions in an HT-PEFC.
000172220 536__ $$0G:(DE-HGF)POF2-54G24$$a54G - JCNS (POF2-54G24)$$cPOF2-54G24$$fPOF II$$x0
000172220 536__ $$0G:(DE-HGF)POF2-451$$a451 - Soft Matter Composites (POF2-451)$$cPOF2-451$$fPOF II$$x1
000172220 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172220 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000172220 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000172220 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x1
000172220 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000172220 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1
000172220 7001_ $$0P:(DE-Juel1)136923$$aIvanova, O.$$b1$$ufzj
000172220 7001_ $$0P:(DE-Juel1)145557$$aHopfenmüller, B.$$b2$$ufzj
000172220 7001_ $$0P:(DE-Juel1)131056$$aZamponi, M.$$b3$$ufzj
000172220 7001_ $$0P:(DE-Juel1)128533$$aMaier, W.$$b4$$ufzj
000172220 7001_ $$0P:(DE-Juel1)143790$$aMajerus, Anne$$b5
000172220 7001_ $$0P:(DE-Juel1)129883$$aLehnert, W.$$b6$$ufzj
000172220 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, M.$$b7$$ufzj
000172220 7001_ $$0P:(DE-Juel1)131067$$aZorn, R.$$b8$$ufzj
000172220 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2014.09.018$$gp. S0360319914025397$$n36$$p21657–21662$$tInternational journal of hydrogen energy$$v39$$x0360-3199$$y2014
000172220 8564_ $$uhttps://juser.fz-juelich.de/record/172220/files/FZJ-2014-05709.pdf$$yRestricted
000172220 909CO $$ooai:juser.fz-juelich.de:172220$$pVDB$$pVDB:MLZ
000172220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172220 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172220 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000172220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172220 9141_ $$y2014
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136923$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145557$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128533$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143790$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000172220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131067$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000172220 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000172220 9132_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000172220 9132_ $$0G:(DE-HGF)POF3-600$$1G:(DE-HGF)POF3$$2G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bProgrammorientierte Förderung$$lPOF III$$vForschungsbereich Materie$$x2
000172220 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vJCNS$$x0
000172220 9131_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vSoft Matter Composites$$x1
000172220 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung$$x0
000172220 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000172220 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x2
000172220 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x3
000172220 980__ $$ajournal
000172220 980__ $$aVDB
000172220 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000172220 980__ $$aI:(DE-Juel1)IEK-3-20101013
000172220 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000172220 980__ $$aI:(DE-Juel1)ICS-1-20110106
000172220 980__ $$aUNRESTRICTED
000172220 981__ $$aI:(DE-Juel1)ICE-2-20101013
000172220 981__ $$aI:(DE-Juel1)IBI-8-20200312
000172220 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000172220 981__ $$aI:(DE-Juel1)IEK-3-20101013
000172220 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000172220 981__ $$aI:(DE-Juel1)ICS-1-20110106