000172228 001__ 172228
000172228 005__ 20240610115950.0
000172228 0247_ $$2doi$$a10.1016/j.jcp.2014.10.017
000172228 0247_ $$2ISSN$$a0021-9991
000172228 0247_ $$2ISSN$$a1090-2716
000172228 0247_ $$2WOS$$aWOS:000346429300017
000172228 0247_ $$2altmetric$$aaltmetric:21824271
000172228 037__ $$aFZJ-2014-05716
000172228 082__ $$a530
000172228 1001_ $$0P:(DE-Juel1)145415$$aMüller, Kathrin$$b0$$eCorresponding Author$$ufzj
000172228 245__ $$aSmoothed dissipative particle dynamics with angular momentum conservation
000172228 260__ $$aOrlando, Fla.$$bAcademic Press$$c2015
000172228 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1430824005_21567
000172228 3367_ $$2DataCite$$aOutput Types/Journal article
000172228 3367_ $$00$$2EndNote$$aJournal Article
000172228 3367_ $$2BibTeX$$aARTICLE
000172228 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172228 3367_ $$2DRIVER$$aarticle
000172228 520__ $$aSmoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
000172228 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000172228 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172228 7001_ $$0P:(DE-HGF)0$$aFedosov, Dmitry A.$$b1
000172228 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2$$ufzj
000172228 773__ $$0PERI:(DE-600)1469164-4$$a10.1016/j.jcp.2014.10.017$$gVol. 281, p. 301 - 315$$p301 - 315$$tJournal of computational physics$$v281$$x0021-9991$$y2015
000172228 8564_ $$uhttps://juser.fz-juelich.de/record/172228/files/FZJ-2014-05716.pdf$$yRestricted
000172228 909CO $$ooai:juser.fz-juelich.de:172228$$pVDB
000172228 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172228 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172228 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172228 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172228 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172228 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172228 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172228 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172228 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172228 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000172228 9141_ $$y2015
000172228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145415$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172228 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172228 9130_ $$0G:(DE-HGF)POF2-451$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$vSoft Matter Composites$$x0
000172228 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000172228 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000172228 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x1
000172228 980__ $$ajournal
000172228 980__ $$aVDB
000172228 980__ $$aI:(DE-Juel1)IAS-2-20090406
000172228 980__ $$aI:(DE-Juel1)ICS-2-20110106
000172228 980__ $$aUNRESTRICTED
000172228 981__ $$aI:(DE-Juel1)IBI-5-20200312
000172228 981__ $$aI:(DE-Juel1)IAS-2-20090406
000172228 981__ $$aI:(DE-Juel1)ICS-2-20110106