Hauptseite > Publikationsdatenbank > Smoothed dissipative particle dynamics with angular momentum conservation > print |
001 | 172228 | ||
005 | 20240610115950.0 | ||
024 | 7 | _ | |2 doi |a 10.1016/j.jcp.2014.10.017 |
024 | 7 | _ | |2 ISSN |a 0021-9991 |
024 | 7 | _ | |2 ISSN |a 1090-2716 |
024 | 7 | _ | |2 WOS |a WOS:000346429300017 |
024 | 7 | _ | |a altmetric:21824271 |2 altmetric |
037 | _ | _ | |a FZJ-2014-05716 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-Juel1)145415 |a Müller, Kathrin |b 0 |e Corresponding Author |u fzj |
245 | _ | _ | |a Smoothed dissipative particle dynamics with angular momentum conservation |
260 | _ | _ | |a Orlando, Fla. |b Academic Press |c 2015 |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1430824005_21567 |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
520 | _ | _ | |a Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential. |
536 | _ | _ | |0 G:(DE-HGF)POF3-551 |a 551 - Functional Macromolecules and Complexes (POF3-551) |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Fedosov, Dmitry A. |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)130665 |a Gompper, Gerhard |b 2 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)1469164-4 |a 10.1016/j.jcp.2014.10.017 |g Vol. 281, p. 301 - 315 |p 301 - 315 |t Journal of computational physics |v 281 |x 0021-9991 |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/172228/files/FZJ-2014-05716.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:172228 |p VDB |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)145415 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130665 |a Forschungszentrum Jülich GmbH |b 2 |k FZJ |
913 | 0 | _ | |0 G:(DE-HGF)POF2-451 |1 G:(DE-HGF)POF2-450 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |l BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |v Soft Matter Composites |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF3-551 |1 G:(DE-HGF)POF3-550 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-2-20090406 |k IAS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|