000172326 001__ 172326
000172326 005__ 20210129214419.0
000172326 0247_ $$2doi$$a10.1021/es501727h
000172326 0247_ $$2ISSN$$a0013-936X
000172326 0247_ $$2ISSN$$a1520-5851
000172326 0247_ $$2WOS$$aWOS:000343640900021
000172326 037__ $$aFZJ-2014-05809
000172326 082__ $$a050
000172326 1001_ $$0P:(DE-HGF)0$$aMander, Ülo$$b0$$eCorresponding Author
000172326 245__ $$aIsotopologue Ratios of N $_{2}$ O and N $_{2}$ Measurements Underpin the Importance of Denitrification in Differently N-Loaded Riparian Alder Forests
000172326 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2014
000172326 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1415784951_17066
000172326 3367_ $$2DataCite$$aOutput Types/Journal article
000172326 3367_ $$00$$2EndNote$$aJournal Article
000172326 3367_ $$2BibTeX$$aARTICLE
000172326 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172326 3367_ $$2DRIVER$$aarticle
000172326 520__ $$aKnown as biogeochemical hotspots in landscapes, riparian buffer zones exhibit considerable potential concerning mitigation of groundwater contaminants such as nitrate, but may in return enhance the risk for indirect N2O emission. Here we aim to assess and to compare two riparian grey alder forests in terms of gaseous N2O and N2 fluxes and dissolved N2O, N2, and NO3- in the near-surface groundwater. We further determine for the first time isotopologue ratios of N2O dissolved in the riparian groundwater in order to support our assumption that it mainly originated from denitrification. The study sites, both situated in Estonia, north-eastern Europe, receive contrasting N loads from adjacent uphill arable land. Whereas N2O emissions were rather small at both sites, average gaseous N2-to-N2O ratios inferred from closed-chamber measurements and He-O laboratory incubations were almost four times smaller for the heavily loaded site. In contrast, groundwater parameters were less variable among sites and between landscape positions. Campaign-based average 15N site preferences of N2O (SP) in riparian groundwater ranged between 11 and 44 ‰. Besides the strong prevalence of N2 emission over N2O fluxes and the correlation pattern between isotopologue and water quality data, this comparatively large range highlights the importance of denitrification and N2O reduction in both riparian grey alder stands.
000172326 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000172326 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x1
000172326 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172326 7001_ $$0P:(DE-HGF)0$$aWell, Reinhard$$b1
000172326 7001_ $$0P:(DE-Juel1)145833$$aWeymann, Daniel$$b2$$ufzj
000172326 7001_ $$0P:(DE-HGF)0$$aSoosaar, Kaido$$b3
000172326 7001_ $$0P:(DE-HGF)0$$aMaddison, Martin$$b4
000172326 7001_ $$0P:(DE-HGF)0$$aKanal, Arno$$b5
000172326 7001_ $$0P:(DE-HGF)0$$aLõhmus, Krista$$b6
000172326 7001_ $$0P:(DE-HGF)0$$aTruu, Jaak$$b7
000172326 7001_ $$0P:(DE-HGF)0$$aAugustin, Jürgen$$b8
000172326 7001_ $$0P:(DE-HGF)0$$aTournebize, Julien$$b9
000172326 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/es501727h$$gVol. 48, no. 20, p. 11910 - 11918$$n20$$p11910 - 11918$$tEnvironmental science & technology$$v48$$x0013-936X$$y2014
000172326 8564_ $$uhttps://juser.fz-juelich.de/record/172326/files/FZJ-2014-05809.pdf$$yRestricted
000172326 909CO $$ooai:juser.fz-juelich.de:172326$$pVDB:Earth_Environment$$pVDB
000172326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145833$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172326 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bPOF III$$lMarine, Küsten- und Polare Systeme$$vTerrestrische Umwelt$$x0
000172326 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000172326 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-255$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x1
000172326 9141_ $$y2014
000172326 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172326 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172326 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172326 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172326 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172326 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172326 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172326 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172326 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172326 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000172326 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172326 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000172326 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000172326 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000172326 920__ $$lyes
000172326 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000172326 980__ $$ajournal
000172326 980__ $$aVDB
000172326 980__ $$aI:(DE-Juel1)IBG-3-20101118
000172326 980__ $$aUNRESTRICTED