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Abstract

Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow for a non-invasive
investigation of cerebral functions with high temporal and spatial resolution. The main challenge of such integration is the
removal of the pulse artefact (PA) that affects EEG signals recorded in the magnetic resonance (MR) scanner. Often applied
techniques for this purpose are Optimal Basis Set (OBS) and Independent Component Analysis (ICA). The combination of
OBS and ICA is increasingly used, since it can potentially improve the correction performed by each technique separately.
The present study is focused on the OBS-ICA combination and is aimed at providing the optimal ICA parameters for PA
correction in resting-state EEG data, where the information of interest is not specified in latency and amplitude as in, for
example, evoked potential. A comparison between two intervals for ICA calculation and four methods for marking
artefactual components was performed. The performance of the methods was discussed in terms of their capability to 1)
remove the artefact and 2) preserve the information of interest. The analysis included 12 subjects and two resting-state
datasets for each of them. The results showed that none of the signal lengths for the ICA calculation was highly preferable
to the other. Among the methods for the identification of PA-related components, the one based on the wavelets transform
of each component emerged as the best compromise between the effectiveness in removing PA and the conservation of
the physiological neuronal content.
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Introduction

The combination of electroencephalography (EEG) and func-

tional magnetic resonance imaging (fMRI) can provide a non-

invasive comprehensive view of brain activity with high temporal

(EEG) and spatial (fMRI) resolution. The EEG technique gives a

measure of the synchronized electrical activity of large populations

of neurons. Despite its high temporal resolution, which is in the

order of tens of milliseconds, the EEG suffers from the spatial

inverse problem, related to the difficulty in inferring the spatial

location of neuronal sources in the brain from the potentials

recorded at scalp level [1,2].

The fMRI technique based on blood oxygen level-dependent

(BOLD) contrast gives information about the hemodynamic

processes associated with the neuronal activity. The BOLD

measure is extended to the whole brain and has a spatial

resolution in the order of mm, but suffers from an ill-posed

temporal problem, as it is hard to extract the timings of events that

caused the measured hemodynamic modifications [3].

As the strengths and weaknesses of the two approaches are

complementary, the simultaneous recording of EEG and fMRI

holds great promise for cognitive neuroscience. Among the

possible applications, it is worth mentioning the pre-surgical

evaluation for epileptic diseases [4], the investigation of neuro-

vascular coupling [5,6,7] and connectivity studies [8,9,10].
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An area of increasing interest is the analysis of EEG and BOLD

signals during resting wakefulness. The spontaneous electrophys-

iological activity exerts a large influence on sensory, cognitive and

motor-driven processes [11,12] and contributes to the total

variance of brain electrical activity much more than the evoked/

event-related responses [13]. Several fMRI studies showed the

presence of multiple specific functional large-scale networks during

rest, the so-called Resting State Networks (RSNs). In addition to

the default mode network, i.e. a cohesive network supporting a

default mode of brain function that appears deactivated during

cognitive tasks [14], functional connectivity during rest has been

identified for the motor system [15], the language system [16], the

attention system [17] and the working memory system [18].

Despite growing knowledge of BOLD RSNs, their underlying

electrophysiological signature is still a matter of discussion. One of

the main topics to clarify is how the coherent slow fMRI

hemodynamic fluctuations are coupled to the fast neuronal activity

recorded with EEG. However, a meaningful exploitation of EEG-

fMRI information relies on good data quality, especially in the

case of resting-state applications. Indeed, while in the study of

event-related brain response the interesting information is usually

restricted to a group of channels and to specific intervals and is

known a priori, in resting-state analysis the global state of the brain

is of interest.

Despite the potential advantages of EEG and fMRI integration,

its main concern regards the removal of artefacts from the EEG

signal recorded in the magnetic resonance (MR) environment. The

main artefact affecting the EEG signal is the gradient artefact

(GA), caused by the switching of magnetic field gradients required

for MR image acquisition. Its amplitude can be up to 100 times

larger than the original EEG signal, but since it occurs at fixed

time intervals, it is easily removable by subtracting an average GA

template from the EEG signal at the channel level [19]. A second

type of artefact is indirectly related to cardiac activity and is

referred to as pulse artefact (PA). Although the PA amplitude is

smaller than that of GA, its removal is more challenging. Indeed,

the PA characteristics vary not only across subjects, but also within

each subject, as they are non-stationary over space and time.

Three factors mainly contribute to PA: first, a ballistic effect is

considered to be caused by pulsatile body motion, probably due to

the acceleration and abrupt reversal in blood flow in the aortic

arch [20]. The movement of electrically conductive material in a

static magnetic field leads to electromagnetic induction; therefore,

the body’s pulsatile movement causes electromotive forces (EMFs)

in the EEG recording system, which in turn affect the registered

EEG signal. Additional EMFs are caused by a slight rotation of the

head, probably produced by changes of pulsatile blood flow

momentum in the cranial arteries [21]. The third main

contribution to PA is given by the Hall effect, related to the

movement of a conductive fluid (blood) in a static magnetic field

which induces electrical potentials recorded at the scalp level [22].

The combination of these factors increases the spatial and

temporal complexity of the PA. Up to now, several methods have

been proposed for its removal. A first group of techniques operates

at the channel level by subtracting from each EEG channel a

template of the artefact. There are two common ways to estimate

such a template. The averaged artefact subtraction method (AAS)

[19] uses as a template a dynamic average of the artefact across its

occurrences; more often applied is the optimal basis set method

(OBS), which estimates the template using the first (usually 3)

principal components of the signal corresponding to PA intervals

[23]. Although both of them remove the majority of the artefact,

none of them is able to correct the EEG signal completely. As an

alternative to channel-based techniques, blind source separation

(BSS) techniques have been proposed, among which independent

component analysis (ICA) [24] is most commonly used. ICA is

used to remove EEG artefacts due to eye blinking or movements

[25], in particular those related to the MR environment

[26,27,10]. ICA decomposes the signal into components that are

maximally independent over time; following the assumption that

PA sources are independent from neuronal ones, ICA appears to

be a suitable technique for retrieving the underlying neuronal

information.

However, for the ICA decomposition to be meaningful, the

sources should be stationary in space, and often this is not the case

with EEG signals. Indeed, not only the spatial topography of PA

contribution changes during the cardiac cycle, but the neuronal

signals themselves can also be strongly non-stationary over time.

Although the ability of ICA to remove PA has been confirmed in

more than one work [26,10], in the literature there are also

reported cases of poor ICA performance [28,29,30]. The unmet

requirement of stationariness could be one of the reasons for the

possible failure of ICA algorithm to remove PA. Besides that, the

tuning of ICA parameters and the identification of the PA-related

independent components (ICs) are challenging.

Recently it was proposed to apply OBS before ICA in order to

help in meeting the ICA assumptions and to check if the ICA

performance could improve if a reduced amount of artefact was

present. The OBS-ICA combines the strengths of both approaches

and was confirmed capable of producing satisfactorily improved

corrections [30,31], compared with the single techniques. Never-

theless, the ICA correction entails the risk of deteriorating the

EEG signal; the ICA step is performed on a signal already

subjected to OBS and less contaminated by artefacts than

previously, making the PA contribution in the resulting compo-

nents less noticeable. This makes the selection of artefactual

components a very delicate task. Such selection steps can be

performed either by manually inspecting the components (e.g.

[32]) or by using semi-automatic or automatic methods. Although

several research groups performed the correction by manually

selecting the PA-related components [33,34], the manual

approach relies significantly on the user’s experience and without

a proper training it cannot be recommended as a routine

procedure. Among the automatic or semiautomatic selection

criteria, the most common ones look either at the amount of

correlation that the ICs share with the electrocardiographic (ECG)

signal or a PA template [26] or at the ICs variance [35].

Although Vanderperren et al., [31] inspected the effects of

several PA correction methods on the quality of visual event-

related potentials (ERPs), up to now the impact of different PA

corrections on resting-state data has not been sufficiently

investigated. In these data, the information of interest is largely

unknown; therefore optimal cancelling of EEG artefacts is

extremely important.

Starting from the assumption that OBS-ICA has the potential to

improve the quality of EEG signal retrieval [30,31], the current

work is focused on this combined approach and aims at defining

an appropriate time interval for ICA calculation and IC selection

criteria, as applied to resting-state EEG data recorded at 3T. In

particular, two time intervals for ICA calculation were compared,

together with four criteria for marking the artefactual components.

The different methods were evaluated in terms of their capability

to 1) reduce the amount of PA and 2) preserve the information of

interest that for the sake of simplicity was identified as the alpha

rhythm in the occipital channels or more generally any

contribution unlocked to the PA. The comparison was performed

on a group of 12 healthy volunteers who underwent EEG-fMRI

acquisition during two separate periods of rest interleaved by a

ICA Removal of EEG Pulse Artifact at 3T
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cognitive task. The performance of each ICA correction was tested

on both the resting-state recordings separately. A comparison

between the results of the ICA corrections on the two groups of

datasets was performed with the aim of assessing their reliability

and reproducibility.

Materials and Methods

Subjects
Twelve healthy right-handed volunteers with no history of

neurological disorders took part to the study (9 males, mean

age = 27.7 yrs, standard deviation = 6.6 yrs). All of them signed a

written informed consent to the protocol, in accordance with local

ethical committee guidelines.

EEG-fMRI data acquisition
All EEG data were recorded simultaneously with fMRI

recordings in a Siemens 3T Trio MR scanner (Germany). EEG

data were acquired using an MR-compatible EEG system (Brain

Products, Gilching, Germany). The EEG cap (BrainCap MR,

EasyCap GmbH, Breitbrunn, Germany) included 63 scalp

electrodes distributed according to the 10–20 system and one

additional ECG electrode placed on the participants’ back. EEG

signals were acquired relative to an FCz reference, with the

ground in correspondence of Iz (10-5 electrode system). The EEG

data were sampled at 5000 Hz, with a band-pass filtering of

0.016–250 Hz. The impedance at each electrode was kept lower

than 10 kV.

Protocol
The study protocol was approved by the local human subjects

review board at RWTH Aachen University and was carried out in

accordance with the Declaration of Helsinki. Two phases of rest

lasting 6 minutes (i.e. 180 fMRI scans) were separated by 3 runs of

a visual oddball task lasting 10 minutes and 8 seconds (i.e. 304

fMRI scans) per run. During resting wakefulness the subjects were

asked to keep their eyes closed. The analysis was performed only

on the EEG resting-state recordings, the data from the visual

oddball task are presented elsewhere [36,37].

EEG data processing
A schematic illustration of the entire processing stream is

provided in Figure 1. The EEG data were first cleaned by GA and

downsampled to 250 Hz with BrainVision Analyzer 2.0 software

(BrainProducts, Gilching, Germany). The imaging artefact was

corrected by subtracting from each channel a template created

using a sliding average of 21 GA blocks. The R peaks were

identified using the specific tool provided by Analizer 2.0 in semi-

automatic modality. The first R peak was semi-automatically

selected from a well-defined QRS complex. This was used as a

template for the identification of all other R peaks, which was

performed by the software. The correct position of the R peaks

was verified by the user and corrected where necessary. After the

R peaks identification, the EEG raw data were exported into

Matlab 7.11.0 (R2010b) and the FMRIB plug-in of the EEGLAB

toolbox (version 11.0.5.4b) [38] was used to perform the OBS

correction, where the default parameters were used, i.e. a basis set

of the first 3 principal components was the PA template. The EEG

signals were then reimported into Analyzer 2.0, where the

extended infomax ICA [39] was applied in order to reject the

residual cardiac related artefact. ICA was applied after segmen-

tation of the EEG signal from the fifth fMRI scan onwards. To

compute the ICA mixing matrix we used either the whole data

(ICA_whole) or epochs lasting from 0 to 700 ms with respect to

the R peaks (ICA_R). The components resulting from each ICA

calculation were segmented into PA intervals (from 0 to 700 ms

w.r.t. the R peaks) and further analyzed. The components to be

removed were identified following four different methods; the first

three were implemented in Matlab scripts and the fourth was a

function of Analyzer 2.0. We evaluated the different ICA

parameter settings separately on the two groups of datasets,

relative to the resting-state periods preceding (Dataset1) and

following (Dataset 2) the cognitive paradigm. The comparison was

performed on eight ICA-based methods, resulting from the

combination of the two types of ICA calculation (ICA_whole

and ICA_R) and the four criteria for selecting the PA-related ICs.

Selection of PA-related components
Variance contribution (pvaf). Each component was back-

projected to the EEG signal space, and the variance of the

resulting signal across the PA interval (0–700 ms after R) was

calculated and compared to the initial EEG variance during the

same interval, following the same procedure described in [31,35].

The comparison relative to one representative IC is displayed in

Figure 2 a). The ICs that explained more than the 2.5% of the

initial variance were marked as PA-related and removed.

Correlation (corr). We evaluated the cross-correlation

between each IC and two PA templates. Since the cardiac-related

artefact was found to change polarity from one side of the head to

the other [35,40], we estimated one template for each hemisphere.

Each template was created by averaging the EEG uncorrected

signals (before OBS) over the PA intervals and over the left/right

EEG channels (the mesial channels were included in both

templates). In Figure 2 b) one subject’s templates are plotted as

an example. Instead of using an absolute correlation threshold, we

used as reference the maximum correlation between each template

and the ICs, marking as cardiac-related the ICs whose correlation

with one of the templates was higher than the 40% w.r.t. the

maximum. The choice of a relative threshold with respect to an

absolute one was justified by the differences in correlation

coefficients across subjects.

Partial AutoCorrelation Function (PACF)
Blocks formed by four PA intervals were averaged and the

PACF was calculated, similarly to that performed in [31]. The ICs

with a peak at R–R distance lag were selected (an exemplar PACF

with R–R peak is in Figure 2 c)) and the maximum peak

amplitude across these ICs was used as a reference. The ICs with a

peak amplitude higher than one third of the maximum were

removed.

The thresholds of the automatic selection criteria were chosen

on an empirical basis, expressly equal across subjects.

Wavelets analysis (wave). For each IC, a continuous

wavelets transform (CWT) was performed in each PA interval,

and the CWTs across intervals were averaged. We used the Morlet

complex family of wavelets (central frequency = 14.591 Hz,

bandwidth = 5.836 Hz) and investigated frequencies going from

1 Hz to 20 Hz with twenty steps in between. Basing on the time-

varying frequency content of the PA templates, the ICs having a

peak time locked to the R peak between the delta and alpha band

were selected and removed. Figure 2 d) shows the CWT of an

exemplar PA template. This selection method, which has not been

used in previous studies, was created in the attempt to emphasize

the frequency contributions time-locked with the cardiac cycle,

which characterize the PA-related components. The selection was

performed by one person, who was trained on the inspection of

components and their time-frequency transforms for two and a

half months.

ICA Removal of EEG Pulse Artifact at 3T
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Figure 1. Schematic illustration of the EEG data processing.
doi:10.1371/journal.pone.0112147.g001

Figure 2. Methods for selection of PA-related components. a) pvaf method: Variance contribution of one exemplar component (IC
backprojection in red, original EEG in black), b) corr method: PA templates of one subject (left hemisphere in blue, right one in green), c) pacf method:
PACF of one representative IC, d) wave method: wavelets transform (instantaneous amplitude, gabor normalization) of one representative PA
template.
doi:10.1371/journal.pone.0112147.g002
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Validation criteria. To check the quality of PA removal,

EEG epochs from 2200 ms to 1 s w.r.t. R peaks, before and after

ICA correction, were extracted and compared. We then assessed

the performance of the different ICA corrections by means of

three different criteria. When the effects of PA correction on the

alpha content were examined, only the occipital channels were

considered, otherwise all the EEG channels were used to assess the

quality of PA correction. In each validation, the quality measures

of the eight ICA-based methods were compared through a non

parametric Kruskal Wallis (KW) test, for each dataset separately; if

significant differences emerged at the group level, the KW statistics

were used in a multiple comparison test to extract the pairwise

differences. This was followed by two further comparisons,

between 1) the four selection methods (across datasets and ICA

intervals) and 2) the two ICA intervals (across datasets and

selection methods).

Peak-to-peak (PTP) value. Assuming that the maximum

signal amplitude corresponds to PA occurrence, the ratio between

the maximum signal variation after and before ICA correction is

proportional to the amount of artefact removed by ICA. This

ratio, averaged over all the EEG channels, was therefore used to

estimate the effectiveness of the PA correction.

Batch frequency content (BFC)
Subjects having an evident alpha peak in the mean PSD before

ICA were selected (Subj4, Subj9, Subj11 and Subj12) with the aim

of checking if the alpha rhythm could be retrieved after ICA

correction. For each epoch, we computed the power spectral

density (PSD) of the occipital channels with an autoregressive (AR)

spectrum. The PA shows a main contribution in the low frequency

range (between around 4 and 8 Hz) and an additional one in the

alpha range (from 8 to 13 Hz). Since during rest the signal of

interest in the occipital channels is mainly in the alpha band,

assuming that the neuronal alpha rhythm contributes to the most

of the alpha power, a good PA correction should remove as much

of the low frequency contribution as possible while maintaining

most of the alpha power. For this purpose, we estimated the mean

PSD across epochs and occipital channels (O1, O2 and Oz) and

looked at the ratio between delta (delta ratio), theta (theta ratio)

and alpha (alpha ratio) power after and before ICA. Additionally,

we defined a quality coefficient (QC) as the ratio between the

alpha ratio and the mean value between delta and theta ratios:

such a measure is proportional to the amount of 1) low frequency

power cancelled and 2) alpha power preserved.

In addition to the statistical analysis of the QC values (QC_test),

a comparison including all subjects and channels was performed

(group_test). In this case, the previous assumptions on the alpha

contribution were no longer reliable, furthermore no information

of interest was expected in the higher frequency bands. Therefore,

the quality of correction was only evaluated in terms of the

proportion of delta and theta power that was removed.

Time-varying frequency content (TFC)
We added this validation criterion to provide further details

about the ICA correction effects on the signal spectral content.

Indeed, the change of frequency power can give ambiguous

information, especially if the alpha band is considered. Since the

percentages with which PA and neuronal signals contribute to the

total alpha power are not known a priori, it is difficult to state

whether the physiological alpha rhythm is preserved or not just by

looking at the alpha power change. Nevertheless, the alpha

temporal properties can help in distinguishing PA alpha from

neuronal alpha, since the latter is not temporarily locked to PA

occurrence. As a consequence, the modifications in time-varying

alpha content induced by ICA can provide further information on

the correction quality.

More generally, in the entire frequency spectrum a good

correction can be assessed by looking at the continuous frequency

component (physiological) compared to the PA-locked ones

(artefactual), without having any a priori knowledge on 1) their

contribution to the total power and 2) the frequency band of

interest. The reader can have a better idea of the difference

between physiological and artefactual frequency contributions by

looking at Figure 3, where the time-frequency transforms of one

PA-related and one physiological source of the EEG signal are

compared. For each subject and EEG channel we computed the

mean CWT across epochs using a Morlet wavelet (central

frequency = 0.8125 Hz), before and after ICA correction. Absolute

CWT values were considered. We then performed averaging

across all subjects and 1) all channels or 2) only the occipital ones:

in the latter, we expected to find a continuous alpha contribution,

in particular after ICA correction. We emphasized the time-

frequency components that were removed from each ICA

correction by subtracting the CWT of the corrected signal

(CWTpost) from the CWT of the uncorrected signal (CWTpre).

After visual inspection of such difference, dubbed CWToff, we used

its time derivative (averaged over both time and frequency) as

metric for the correction quality. Under the hypothesis that low

and high values of derivative can be associated to physiological

and PA-related frequency components respectively, the selection

methods corresponding to higher mean derivatives of CWToff

were evaluated better than others.

Results

Across datasets and ICA intervals, it emerged that the variance-

based selection criterion removed less components compared to

the others, with 9.262.6 (mean 6 standard deviation) out of 63

ICs removed, against 19.667.3 of the correlation method,

21.464.9 of the wavelets method and 2065.3 of the partial

autocorrelation function method. The results of each validation

method relative to both the datasets are shown below.

PTP value
The PTP value comparison (of which Figure 4 is an example)

revealed differences in the eight ICA correction methods in terms

of their effectiveness in reducing the PA amplitude. The PTP ratio

mean and standard deviation of the eight ICA-based methods on

Dataset1 and Dataset2 are listed in Table 1 and Table 2

respectively.

The findings of the two datasets were in agreement. The ICA

calculation on the whole signal combined with the variance

contribution method for the selection of PA-related ICs

(ICA_whole_pvaf) led to the best results in terms of PTP ratio,

because in both datasets the mean percentage of residual PTP

associated with this method was minor compared to the others.

The KW test between all different methods showed significant

differences only in Dataset2 (p,0.02), where the multiple pairwise

comparison showed that when the ICA matrix was calculated

from the whole dataset, the variance selection method

(ICA_whole_pvaf) performed significantly better than the corre-

lation method (ICA_whole_corr) (p,0.05). By comparing the four

selection methods across ICA intervals and datasets, significant

differences emerged (p,0.01). In particular, the pvaf method

performed better than the corr method (p,0.01) and pacf method

(p,0.05). Despite the lower PTP ratio, no significant differences

were detected with respect to the wave method. The performance

of the corr method was poor in comparison to the others. The

ICA Removal of EEG Pulse Artifact at 3T
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Figure 3. Mean CWT (absolute values) across PA intervals of two independent components of the EEG signal of one representative
subject (before ICA correction). One component is artefactual (panel a) and one is physiological (panel b).
doi:10.1371/journal.pone.0112147.g003

Figure 4. Example of PTP value comparison relative to the Oz channel of one subject. The amplitude ranges of EEG signal before (black
curve) and after correction with ICA were compared, using the two ICA calculations (ICA_whole on the left, ICA_R on the right) and the four methods
for selection of components (the colour legend is at the top left of each plot).
doi:10.1371/journal.pone.0112147.g004
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statistical test between the two ICA intervals showed no significant

differences; indeed, the performance of ICA_whole with respect to

ICA_R was variable and dependent on the selection method and

the dataset under examination.

BFC
The comparison between the eight ICA-based methods based

on their frequency content led to partially conflicting results.

Indeed, while the group_test results were in line with the PTP

value results, the QC_test provided discordant information with

respect to them.

The group_test (including all the subjects and all the EEG

channels) confirmed the capability of the pvaf method to remove

the low frequency artefactual contribution. The values of the ratio

between the delta and theta power after and before the eight ICA

corrections are listed in the upper panel of Table 3 (Dataset1) and

Table 4 (Dataset2). Significant differences were found between the

methods (p,0.01 in both datasets). In Dataset1, the pvaf_whole

method removed significantly more low frequency (LF) power

than corr_whole (p,0.01), wave_whole (p,0.03), pacf_whole (p,

0.01) and corr_R (p,0.04) methods. In Dataset2, the pvaf_whole

method removed significantly more LF power than corr_whole

(p,0.01), wave_whole (p,0.01), corr_R (p,0.03) and pacf_R

(p,0.04) methods. Summarizing across datasets and intervals used

for ICA calculation, the selection based on variance led to the

greatest removal, followed by the wave, pacf and corr selection

methods. The KW analysis showed a significant difference among

these methods (p,0.01), with the pvaf method significantly

different from the other three (p,0.01). No significant differences

were identified between the two intervals for ICA calculation

(ICA_whole and ICA_R).

The results of the QC_test (considering only the occipital

channels of the four subjects with alpha peak) are listed (mean 6

standard deviation) in Table 3 and Table 4 for Dataset1 and

Dataset2 respectively. These tables include the ratio between the

delta, theta and alpha power after and before ICA correction. The

KW analysis performed on the eight methods with each of the

computed measures (QC, delta_ratio, theta_ratio and alpha_ratio)

showed no significant differences.

Nevertheless, we could identify differences in the eight ICA-

based methods’ performance. In contrast with the PTP validation,

the selection method based on variance contribution was

associated with the lowest QC, regardless of the interval used for

ICA calculation: the pvaf method reduced the LF power more

than the others, but it also cancelled the majority of the alpha

power. When looking at both datasets, the other selection methods

led to good and comparable results in terms of QC. In some cases,

the corr and pacf methods preserved a higher percentage of alpha

power than the wave method, but in such cases they were less

effective in removing the LF contribution. By comparing the two

ICA intervals (across datasets and selection methods) and the four

selection methods (across datasets and ICA intervals) separately,

no significant differences emerged. However, the wave selection

method had the highest mean QC value (QC = 1.0160.4),

immediately followed by corr (QC = 0.9560.42) and then by pacf

(QC = 0.8960.39) and pvaf (QC = 0.7560.28) ones respectively.

The wave method removed more alpha power compared to the

pacf and corr ones, but the method also removed more

components in the delta and theta frequency ranges (data not

shown). Figure 5 shows for one representative subject the spectral

content across PA epochs, before and after ICA corrections with

the four selection methods.
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TFC
The visual inspection of the CWToff of each ICA-based method,

representing the time-varying frequency components removed at

the group level, allowed us to easily discriminate between poor and

good corrections. The qualitative and quantitative comparisons

based on CWToff_occ (occipital channels) and CWToff_all (all

channels) led to results that were in line with the findings of the

previous QC_test: indeed, they confirmed the higher reliability of

the wave method with respect to the pvaf one in preserving the

information of interest.

The results of the quantative comparison based on the mean

derivative (MD) of the CWToff are described hereinafter. The MD

values are listed in Table 5 (Dataset1) and Table 6 (Dataset2). In

the analysis of CWToff_all, the KW statistics showed significant

differences between the eight ICA corrections (p,0.01 for both

datasets). Looking at the pairwise comparisons, in Dataset1,

ICA_R_wave method performed significantly better than

ICA_R_corr method (p,0.03), whereas no significant pairwise

differences emerged in Dataset2. No significant differences

emerged from the comparison between the two ICA intervals

(across datasets and selection methods), whereas the comparison

between the four selection methods showed significant differences

(p,0.01), with the corr and pacf methods significantly worse than

the wave and pvaf methods (p,0.01). In particular, the wave

method was first-ranked, followed by pvaf, pacf and corr methods.

Similar results emerged from the analysis of CWToff_occ, where

significant differences were found between the eight ICA

corrections in Dataset1 (p,0.03), but not within the single pairs

of methods. Again, significant differences emerged between the

four selection methods but not between the two ICA intervals (p,

0.01). The rank was the same as in CWToff_all. The pairwise

comparison showed that the corr method was significantly worse

than pvaf and wave methods (p,0.01), while the pacf method was

just worse than the wave method (p,0.02).

These quantitative findings were confirmed by the visual

inspection of CWToff and CWTpost (especially the ones relative

to occipital channels), from which emerged the capability of the

wave method to remove the time-varying alpha, locked to the PA,

while leaving intact the continuous alpha. The visual inspection

proved the poor performance of the corr method, which left the

time-varying contribution related to the PA untouched, and

confirmed the tendency of the pvaf method to remove information

of interest. The pacf method performed better than corr but worse

than wave and pvaf methods.

The CWTpost_occ and the CWToff_occ of the eight ICA

corrections, relative to Dataset1, are shown as example in Figure 6

(ICA_whole) and Figure 7 (ICA_R). Whichever ICA interval was

used, the CWTs after ICA correction (on the left panels) show how

the wavelet method left the most continuous alpha contribution,

although it removed the low frequency artefactual contribution

less than the pvaf method. Further confirmation can be found by

looking at the CWToff_occ (right panels), displaying that 1) the

wave method removed only the PA-related alpha and 2) the pvaf

method removed the PA more than the others but together with a

portion of continuous alpha power.

Discussion

The main objective of the present study was to identify the

optimal ICA parameters for the removal of PA from EEG data

recorded in an MR environment, after OBS correction. Since our

interest was the analysis of spontaneous brain activity with EEG

and fMRI, we discussed the effects of different ICA parameter

settings on resting-state EEG data recorded at 3T. We compared
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two intervals for the calculation of the ICA mixing matrix, 1) the

entire signal and 2) the PA intervals, together with four methods

for selecting the PA-related ICs, based on their 1) contribution to

the artefact variance, 2) correlation with PA templates, 3) wavelets

transform and 4) partial autocorrelation function. The quality of

the EEG cleaning was assessed by looking at the changes occurring

after ICA correction in the EEG signal around the R peaks (from

2200 ms to 1 s after it). Three different criteria were considered,

based on the EEG 1) peak to peak amplitude, 2) batch spectral

content and 3) time-varying spectral content. The comparison was

performed on two groups of datasets relative to the same 12

subjects: the general agreement between the outcomes of the two

comparisons highlighted the reliability of each ICA correction,

whose performances were usually reproducible across datasets.

The selection of PA-related ICs based on their wavelets transform

emerged as the best compromise between the amount of removed

PA and the preservation of the neuronal alpha content.

Comparison with previous studies
To the best of our knowledge, this is the first study comparing

different ICA corrections in terms of their capability to retrieve

resting-state data information from data measured in an MR

environment. Indeed, the widespread comparison between OBS,

ICA and OBS-ICA methods described in [31] investigated the PA

removal quality in ERP data from visual tasks, following and

extending the comparative analysis on auditory ERPs performed

in [30]. Grouiller et al. [28] evaluated algorithms for the removal

of imaging and cardiac artefacts looking at the goodness of

retrieval of the alpha rhythm modulation from a block paradigm

and the correct identification of interictal spikes; despite the similar

application, they compared ICA to other methods without

investigating the details of parameter setting.

In our work, among the several methods proposed to remove

the PA, we focused on OBS-ICA combination, found to be

capable of improving the correction performed separately by each

of the two techniques [30,31]. Despite this potentiality, the

additional use of ICA after OBS involves the risk of affecting the

quality of the underlying neuronal signal. In resting-state data,

such risk is especially high: since the information of interest is

global and not always predictable, the discrimination between

neuronal and PA-related ICs is especially challenging. Our main

aim was therefore to identify the most appropriate method for

selecting the PA-related components. We added the new selection

method based on a visual inspection of the ICs wavelets transform

averaged across the R epochs to the commonly used criteria based

on correlation with a PA template, variance contribution to the PA

and autocorrelation of the ICs. Our new selection method

represents the main finding of this paper, since it emerged as a

valuable criterion for marking the PA-related components.

Validation criteria and main findings
The quality of PA correction was evaluated from different

perspectives. The PTP comparison looked at the change in the

maximal variation of the EEG signal due to ICA correction,

assuming the PTP value to correspond with PA occurrence.

However, this criterion provided information regarding the

amount of PA removal only, whereas the validations based on

the frequency content change were also potentially sensitive to the

deterioration of the signal of interest; in this application, the latter

was identified as the alpha rhythm clearly visible in the occipital

channels of four subjects (BFC validation, QC_test), and more in

Figure 5. AR power spectral density across EEG epochs relative to the occipital channels of one representative subject, before and
after ICA correction with the four selection methods. The spectral contents were averaged across the PA intervals (ICA_whole and ICA_R).
doi:10.1371/journal.pone.0112147.g005
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general as the frequency components unlocked to PA occurrence

(TFC validation).

The BFC criterion inspected the modifications induced by ICA

correction to the EEG batch frequency spectrum, giving a

quantitative measure of the power change in each band of interest

(delta, theta, alpha). This approach assumes that the PA spectrum

is characterized by peaks at heart-rate frequency and its harmonics

[40]. We also assumed that the main PA contribution would occur

in the low frequency range and a smaller one in the alpha range,

according to the frequency content of the PA templates of all

subjects.

A first quality check was performed on the occipital channels of

the four subjects with a visible alpha peak, where the PA

contribution to the alpha band was estimated to be less than the

neuronal one. We therefore considered the quality of each ICA

correction as proportional to the percent of 1) removed low

frequency power (delta and theta bands) and 2) preserved alpha

power. For this purpose, we defined a quality coefficient as the

ratio between the former and the latter. With respect to the PTP

comparison, this validation accounted for both the artefact

removal and the recovery of the underlying information; on the

other hand, we could not define a range of QC values determining

a good correction, since the proportion of alpha power related to

PA was unknown. In this application, we considered the ICA

corrections associated with higher QC as better than the others,

but in doing this we discarded the presence of a PA contribution to

the alpha power.

To make the statistical analysis stronger, we additionally

evaluated the change in batch frequency power in all subjects

and channels. However, the assumptions on the predominance of

alpha physiological content in the total alpha were not valid

anymore, therefore we only investigated the amount of low

frequency power that was removed.

In summary, the BFC validation provided more detailed

information with respect to the PTP comparison, but was limited

by the impossibility to distinguish between PA-related and

physiological contributions in the same frequency band. The

investigation of the time-frequency information proved to be more

suitable for this purpose.

The TFC criterion inspected the modifications induced by ICA-

based methods to the EEG time-varying frequency content using

the CWTs. Since the PA-related frequency content was locked in

time to PA occurrence, while the physiological one was

independent, we evaluated the quality of cleaning in terms of

the capability to preserve the long lasting contribution and cancel

the one locked in time to the PA occurrence. In particular, we

analyzed the time-frequency components that were removed by

each ICA correction, both visually and quantitatively. This

criterion helped in discriminating the neuronal and PA-related

Figure 6. Group level based CWT (absolute values). Left: CWT of the EEG signals after correction (CWTpost) with the four selection criteria,
averaged across R epochs and occipital channels. Right: CWT of the EEG signal removed by each ICA correction (CWToff), averaged across R epochs
and occipital channels. The shown correction is relative to ICA calculation based on whole data (ICA_whole).
doi:10.1371/journal.pone.0112147.g006
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frequency contribution and provided further valuable information

for the quality assessment.

It is worth mentioning that the two frequency-validation criteria

(BFC and TFC) are specific to our work with respect to the

previous methodological comparisons and proved to be extremely

useful in the assessment of the effects of each ICA correction on

the signal of interest. The results of the comparative analysis

strengthen the need to consider different factors when assessing the

quality of PA correction. While the validation criteria agreed on

the similar performance of the two intervals for ICA calculation,

their findings on the four selection methods were more discordant.

Indeed, the PTP criterion led to conclusions that were partially in

disagreement with the other validation criteria. The former

showed that the selection of components based on variance led

to the greatest PA removal and marked it as the best selection

method. On the contrary, the QC and TFC validations revealed

that this criterion removed a higher percent of alpha power than

the other selection methods, including part of the neuronal alpha

signal. The visual inspection and quantitative TFC comparison

revealed the inability of the variance selection method to

discriminate between neuronal and PA-related components and

the higher reliability of the wavelets selection method to this end.

Summarizing the results of the three validation criteria across

the two datasets, the selection of the PA-related ICs based on their

wavelets transform emerged as the best compromise between the

reduction in the PA amplitude and the preservation of the

underlying resting-state information. Indeed, in most cases looking

at the time varying frequency content allowed us to distinguish

easily between neuronal and artefactual components, given the

differences in their temporal properties. The wavelets-based

selection criterion represents a novelty of our comparison with

respect to previous ones. Among the other selection methods, the

one based on the ICs variance showed a more robust performance

compared to the correlation and autocorrelation ones. The pvaf

method may represent a good choice in cases where an automatic

method is required, such as when a big dataset has to be analyzed

in a short time, or in datasets recorded in conditions different from

rest. In future applications, it could be worth combining the results

of pvaf and wave methods, in order to benefit from their strengths

and overcome their complementary weaknesses. In principle, their

integration allows to remove from low to high frequency PA

contributions and at the same time eliminates the risk of removing

physiological components.

Regarding the two signal lengths for ICA calculation, i.e. the

whole dataset or only the PA intervals, both of them led to

acceptable results and none outperformed the other, as deter-

mined by the quantitative comparisons. The variability in the

performance of the selection methods across the subjects of the

group was hypothesized to be related to the overall quality of the

EEG acquisition that in turn influences the goodness of the

Figure 7. Group level based CWT (absolute values). Left: CWT of the EEG signals after correction (CWTpost) with the four selection
criteria, averaged across R epochs and occipital channels. Right: CWT of the EEG signals removed by each ICA correction (CWToff), averaged
across R epochs and occipital channels. The shown correction is relative to ICA calculation based on the PA intervals (ICA_R).
doi:10.1371/journal.pone.0112147.g007
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detection of the R peaks and the performance of OBS and ICA

decomposition.

Methodological limitations
The setting of proper parameters represents a crucial step that

influences the performance of each selection method. The

parameters chosen in our study led to the removal of almost one

third of the components in the corr, wave and pacf methods, a

higher percentage with respect to the pvaf method. Nevertheless,

the latter influenced the original signal more than the others,

indicating that the information about which components are

removed is more relevant than the number itself.

In the variance contribution method, the 2.5% threshold was

chosen based on empirical observations: when using higher

thresholds, such as 5%, only a few components were removed

(the first sorted by energy), which typically did not fully resemble

the artefact. Instead, the 2.5% threshold setting also allowed to

remove cardiac related artefacts with lower energy. It is worth

mentioning that the interval used for computing the explained

variance has an effect on the results and in turn influences the

choice of an appropriate threshold. In our study, the fact that the

highest variance contributions were found in the first components

indicates that our PA interval (from 0 to 700 ms after the R peaks)

did not always match the PA occurrence. On the other hand, the

high temporal and spatial variability of the PA within and between

subjects makes the choice of an interval appropriate for all subjects

very challenging.

In the selection based on correlation, two factors are determi-

nant, i.e. the quality of the ECG signal or template and the

correlation threshold. In our study, we decided to use an artefact

template instead of the ECG signal, since the latter seemed to be

different from the artefact occurrences in the EEG signal;

nevertheless, from our results we could deduce that it is possible

that our template did not resemble the cardiac artefact, at least in

the majority of subjects. The reason for this could be that the

template was estimated from the EEG signal before OBS

correction. Regarding the thresholds, the choices between absolute

or relative thresholds and of the threshold value are not trivial.

The selection method based on wavelets has the major

drawback of being manual, relying on the user’s ability to

recognize the PA frequency contributions. To optimize the quality

of PA removal, the user has to train himself to inspect the IC

signals together with their time-varying spectral content. In the

current application, the performances of the wave method were

not optimal, because the low frequency contribution of the PA was

not removed as efficiently as when using the pvaf method. After

proper training, the user may be able to identify all the artefactual

components. Either way, the combination of visual inspection and

quantitative indices for the selection of components would be very

beneficial.

In the selection method based on the ICs PACF, the most

delicate step was related to the setting of the threshold, at least in

our application. Since many ICs had a peak in correspondence of

the R–R distance, we decided to remove only the ones with a peak

amplitude above a certain threshold, i.e. one third of the

maximum amplitude. A comparison between different thresholds

would also be useful in this case.

It is worth mentioning that the overall performance of the

selection methods strongly depends on the quality of the ICA

decomposition. In this study we used the Infomax ICA algorithm,

which was proved to be effective when used for PA correction in

[31], with the extended option, allowing for components with

negative kurtosis. Nevertheless, in the majority of datasets the ICs

signals changed characteristics over time, sometimes mixing

timeframes of cardiac-related activity with others of neuronal

activity. Debener et al., [35] suggested that the distortion of ICA

solutions might increase with the MR scanner static magnetic field.

Although the reason of the failure of ICA estimation is still

unknown, it could be partially ascribed to the unmet assumption of

spatial stationarity of the sources. Besides the importance of a

proper selection criterion, the quality of ICA decomposition is of

primary importance for obtaining satisfactory results.

Conclusion

A full exploitation of the potentials of EEG-fMRI integration is

possible only if an optimal cleaning of the EEG signal from the

MR related artefacts is performed. The cardiac-related artefact

has variable characteristics over space and time that make it

difficult to remove. This study focused on the PA correction based

on the combination of OBS and ICA and compared eight different

ICA corrections, i.e. two intervals for the ICA calculation and four

methods for selecting the PA-related components. Different

criteria for the assessment of the quality of PA removal were

used, some sensitive to the artefact removal, others also to the

preservation of the information of interest. The two intervals of

ICA calculation led to similar results, whereas the selection of the

artefactual components based on their wavelets transform

emerged as preferable to the other selection methods, since it

resulted in the ability to highlight the PA-related components,

making them easily distinguishable from the neuronal ones. The

results were usually in agreement across the two datasets, thus

confirming the reproducibility of the performance of each ICA

correction algorithm. Even though the quality of the PA removal

largely depends on the performance of the ICA decomposition, the

present work provides valuable information on the optimization of

the selection of PA-related ICs and on the assessment of the effects

that each PA correction has on the EEG signal.
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