001     172371
005     20200702121718.0
024 7 _ |2 doi
|a 10.1109/TGRS.2014.2368831
024 7 _ |2 WOS
|a WOS:000351063800009
037 _ _ |a FZJ-2014-05851
041 _ _ |a English
082 _ _ |a 550
100 1 _ |0 P:(DE-Juel1)129478
|a Jonard, Francois
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Estimation of the hydraulic properties of a sand using ground-based passive and active microwave remote sensing
260 _ _ |a New York, NY
|b IEEE
|c 2015
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1423729058_13954
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8–2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green's functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties.
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-255
|a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|c POF3-255
|f POF III
|x 1
700 1 _ |0 P:(DE-Juel1)129553
|a Weihermüller, Lutz
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Schwank, Mike
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Jadoon, K. Z.
|b 3
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, Harry
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Lambot, Sébastien
|b 5
773 _ _ |0 PERI:(DE-600)2027520-1
|a 10.1109/TGRS.2014.2368831
|n 6
|p 3095 - 3109
|t IEEE transactions on geoscience and remote sensing
|v 53
|x 0018-9413
|y 2015
856 4 _ |u https://juser.fz-juelich.de/record/172371/files/FZJ-2014-05851.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172371
|p VDB
|p VDB:Earth_Environment
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129478
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129553
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129549
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-246
|1 G:(DE-HGF)POF2-240
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|v Modelling and Monitoring Terrestrial Systems: Methods and Technologies
|x 0
913 0 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 1
913 1 _ |0 G:(DE-HGF)POF3-255
|1 G:(DE-HGF)POF3-250
|2 G:(DE-HGF)POF3-200
|a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21