Hauptseite > Publikationsdatenbank > Estimation of the hydraulic properties of a sand using ground-based passive and active microwave remote sensing > print |
001 | 172371 | ||
005 | 20200702121718.0 | ||
024 | 7 | _ | |2 doi |a 10.1109/TGRS.2014.2368831 |
024 | 7 | _ | |2 WOS |a WOS:000351063800009 |
037 | _ | _ | |a FZJ-2014-05851 |
041 | _ | _ | |a English |
082 | _ | _ | |a 550 |
100 | 1 | _ | |0 P:(DE-Juel1)129478 |a Jonard, Francois |b 0 |e Corresponding Author |u fzj |
245 | _ | _ | |a Estimation of the hydraulic properties of a sand using ground-based passive and active microwave remote sensing |
260 | _ | _ | |a New York, NY |b IEEE |c 2015 |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1423729058_13954 |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
520 | _ | _ | |a In this paper, we experimentally analyzed the feasibility of estimating soil hydraulic properties from 1.4 GHz radiometer and 0.8–2.6 GHz ground-penetrating radar (GPR) data. Radiometer and GPR measurements were performed above a sand box, which was subjected to a series of vertical water content profiles in hydrostatic equilibrium with a water table located at different depths. A coherent radiative transfer model was used to simulate brightness temperatures measured with the radiometer. GPR data were modeled using full-wave layered medium Green's functions and an intrinsic antenna representation. These forward models were inverted to optimally match the corresponding passive and active microwave data. This allowed us to reconstruct the water content profiles, and thereby estimate the sand water retention curve described using the van Genuchten model. Uncertainty of the estimated hydraulic parameters was quantified using the Bayesian-based DREAM algorithm. For both radiometer and GPR methods, the results were in close agreement with in situ time-domain reflectometry (TDR) estimates. Compared with radiometer and TDR, much smaller confidence intervals were obtained for GPR, which was attributed to its relatively large bandwidth of operation, including frequencies smaller than 1.4 GHz. These results offer valuable insights into future potential and emerging challenges in the development of joint analyses of passive and active remote sensing data to retrieve effective soil hydraulic properties. |
536 | _ | _ | |0 G:(DE-HGF)POF3-255 |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |c POF3-255 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF3-255 |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255) |c POF3-255 |f POF III |x 1 |
700 | 1 | _ | |0 P:(DE-Juel1)129553 |a Weihermüller, Lutz |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schwank, Mike |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jadoon, K. Z. |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)129549 |a Vereecken, Harry |b 4 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Lambot, Sébastien |b 5 |
773 | _ | _ | |0 PERI:(DE-600)2027520-1 |a 10.1109/TGRS.2014.2368831 |n 6 |p 3095 - 3109 |t IEEE transactions on geoscience and remote sensing |v 53 |x 0018-9413 |y 2015 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/172371/files/FZJ-2014-05851.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:172371 |p VDB |p VDB:Earth_Environment |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129478 |a Forschungszentrum Jülich GmbH |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129553 |a Forschungszentrum Jülich GmbH |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129549 |a Forschungszentrum Jülich GmbH |b 4 |k FZJ |
913 | 0 | _ | |0 G:(DE-HGF)POF2-246 |1 G:(DE-HGF)POF2-240 |2 G:(DE-HGF)POF2-200 |a DE-HGF |b Erde und Umwelt |l Terrestrische Umwelt |v Modelling and Monitoring Terrestrial Systems: Methods and Technologies |x 0 |
913 | 0 | _ | |0 G:(DE-HGF)POF3-255 |1 G:(DE-HGF)POF3-250 |2 G:(DE-HGF)POF3-200 |a DE-HGF |b Marine, Küsten- und Polare Systeme |l Terrestrische Umwelt |v Terrestrial Systems: From Observation to Prediction |x 1 |
913 | 1 | _ | |0 G:(DE-HGF)POF3-255 |1 G:(DE-HGF)POF3-250 |2 G:(DE-HGF)POF3-200 |a DE-HGF |b Marine, Küsten- und Polare Systeme |l Terrestrische Umwelt |v Terrestrial Systems: From Observation to Prediction |x 0 |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)1160 |2 StatID |a DBCoverage |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|