001     172521
005     20230426083114.0
024 7 _ |a 10.1103/PhysRevB.90.094417
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/8098
|2 Handle
024 7 _ |a WOS:000342496900002
|2 WOS
024 7 _ |a altmetric:2729748
|2 altmetric
037 _ _ |a FZJ-2014-05986
082 _ _ |a 530
100 1 _ |a Steinigeweg, R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Scaling of diffusion constants in the spin-$\frac{1}{2}$ XX ladder
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 172521
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We study the dynamics of spin currents in the spin-$\frac{1}{2}$ XX ladder at finite temperature. Within linear response theory, we numerically calculate autocorrelation functions for quantum systems larger than what is accessible with exact diagonalization using the concept of dynamical quantum typicality. While the spin Drude weight vanishes exponentially quickly with increasing system size, we show that this model realizes standard diffusive dynamics. Moreover, we unveil the existence of three qualitatively different dependencies of the spin-diffusion coefficient on the rung-coupling strength, resulting from a crossover from exponential to Gaussian dissipation as the rung coupling increases, in agreement with analytical predictions. We further discuss the implications of our results for experiments with cold atomic gases.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
542 _ _ |i 2014-09-25
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Heidrich-Meisner, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gemmer, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Michielsen, K.
|0 P:(DE-Juel1)138295
|b 3
|u fzj
700 1 _ |a De Raedt, H.
|0 P:(DE-HGF)0
|b 4
773 1 8 |a 10.1103/physrevb.90.094417
|b American Physical Society (APS)
|d 2014-09-25
|n 9
|p 094417
|3 journal-article
|2 Crossref
|t Physical Review B
|v 90
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.90.094417
|g Vol. 90, no. 9, p. 094417
|0 PERI:(DE-600)2844160-6
|n 9
|p 094417
|t Physical review / B
|v 90
|y 2014
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/172521/files/FZJ-2014-05986.pdf
856 4 _ |u https://juser.fz-juelich.de/record/172521/files/FZJ-2014-05986.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172521/files/FZJ-2014-05986.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172521/files/FZJ-2014-05986.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172521
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Supercomputing & Big Data
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts
999 C 5 |a 10.1103/PhysRevB.55.11029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjst/e2007-00369-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.220601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.250602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.1092
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.035115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.217206
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.057203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10909-007-9317-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjst/e2007-00363-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.020405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.197204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.017202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.024402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.134436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.069703
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.067202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.067202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.195129
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.070602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.87.050103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.150601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/25/36/365601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.205301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2561
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.80.885
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.83.1405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature06112
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.235117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.89.075139
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.62.4365
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.110403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.070404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.120601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.130403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.79.124005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.82.040103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.84.011136
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.187201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02530
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.200406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S1049-250X(02)80007-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.214409
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21