001     17253
005     20240709094309.0
024 7 _ |2 DOI
|a 10.1016/j.memsci.2011.07.036
024 7 _ |2 WOS
|a WOS:000295564600025
037 _ _ |a PreJuSER-17253
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Engineering, Chemical
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |0 P:(DE-Juel1)VDB93654
|a Rutkowski, B.
|b 0
|u FZJ
245 _ _ |a Influence of Thermal History on the Cubic-To-Hexagonal Phase Transformation and Creep Behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3 Ceramics
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3536
|a Journal of Membrane Science
|v 381
|x 0376-7388
|y 1
500 _ _ |a The authors would like to express their gratitude to T. Osipova, J. Monch and R. Kuppers for the experimental support for the creep tests and Dr. R. Kriegel, IKTS-HITK for providing the BSCF specimens. This work was supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-104 ("MEM-BRAIN").
520 _ _ |a The influence of the partial cubic-to-hexagonal phase transformation of Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) on the creep behaviour of this perovskite-type oxygen transport membrane was investigated. Isothermal compressive creep tests were carried out in air in the temperature range 750-950 degrees C. Arrhenius plots of the creep rate revealed a significant hysteresis effect. During heating, the creep rate changed slightly up to about 850 degrees C and increased substantially above this temperature. Upon cooling from 950 degrees C it decreased in a nearly linear manner to temperature. Microstructural investigations support the conclusion that the hysteresis is linked with the growth and transformation kinetics of the hexagonal polymorph at the boundaries of cubic grains of BSCF. (C) 2011 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Oxygen separation
653 2 0 |2 Author
|a Ceramic membranes
653 2 0 |2 Author
|a Creep
653 2 0 |2 Author
|a Stability
653 2 0 |2 Author
|a Phase transformation
700 1 _ |0 P:(DE-Juel1)129755
|a Malzbender, J.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB98094
|a Steinbrech, R.W.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)129685
|a Beck, T.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Bouwmeester, H.J.M.
|b 4
773 _ _ |0 PERI:(DE-600)1491419-0
|a 10.1016/j.memsci.2011.07.036
|g Vol. 381
|q 381
|t Journal of membrane science
|v 381
|x 0376-7388
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.memsci.2011.07.036
909 C O |o oai:juser.fz-juelich.de:17253
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|g IEK
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|g IEK
|k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|x 1
970 _ _ |a VDB:(DE-Juel1)131688
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21