000172531 001__ 172531
000172531 005__ 20210129214442.0
000172531 0247_ $$2doi$$a10.1063/1.4892060
000172531 0247_ $$2ISSN$$a0021-9606
000172531 0247_ $$2ISSN$$a1089-7690
000172531 0247_ $$2WOS$$aWOS:000340714600008
000172531 0247_ $$2Handle$$a2128/19012
000172531 0247_ $$2altmetric$$aaltmetric:2633852
000172531 0247_ $$2pmid$$apmid:25149773
000172531 037__ $$aFZJ-2014-05996
000172531 041__ $$aEnglish
000172531 082__ $$a540
000172531 1001_ $$0P:(DE-HGF)0$$aMai, Sebastian$$b0$$eCorresponding Author
000172531 245__ $$aPerturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods
000172531 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2014
000172531 3367_ $$2DRIVER$$aarticle
000172531 3367_ $$2DataCite$$aOutput Types/Journal article
000172531 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1416238073_11272
000172531 3367_ $$2BibTeX$$aARTICLE
000172531 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172531 3367_ $$00$$2EndNote$$aJournal Article
000172531 520__ $$aAn efficient perturbational treatment of spin-orbit coupling within the framework of high-level multireference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations
000172531 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000172531 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172531 7001_ $$0P:(DE-Juel1)132204$$aMueller, Thomas$$b1
000172531 7001_ $$0P:(DE-HGF)0$$aPlasser, Felix$$b2
000172531 7001_ $$0P:(DE-HGF)0$$aMarquetand, Philipp$$b3
000172531 7001_ $$0P:(DE-HGF)0$$aLischka, Hans$$b4
000172531 7001_ $$0P:(DE-HGF)0$$aGonzález, Leticia$$b5
000172531 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.4892060$$gVol. 141, no. 7, p. 074105 -$$n7$$p074105 $$tThe @journal of chemical physics$$v141$$x1089-7690$$y2014
000172531 8564_ $$uhttps://juser.fz-juelich.de/record/172531/files/FZJ-2014-05996.pdf$$yOpenAccess
000172531 909CO $$ooai:juser.fz-juelich.de:172531$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000172531 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132204$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172531 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data $$x0
000172531 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000172531 9141_ $$y2014
000172531 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172531 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172531 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172531 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172531 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172531 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172531 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172531 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172531 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172531 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172531 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172531 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172531 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000172531 980__ $$ajournal
000172531 980__ $$aVDB
000172531 980__ $$aUNRESTRICTED
000172531 980__ $$aI:(DE-Juel1)JSC-20090406
000172531 9801_ $$aFullTexts