000172577 001__ 172577
000172577 005__ 20240712084505.0
000172577 0247_ $$2doi$$a10.1021/nl503249n
000172577 0247_ $$2ISSN$$a1530-6984
000172577 0247_ $$2ISSN$$a1530-6992
000172577 0247_ $$2WOS$$aWOS:000345723800090
000172577 0247_ $$2altmetric$$aaltmetric:2927972
000172577 0247_ $$2pmid$$apmid:25350265
000172577 037__ $$aFZJ-2014-06040
000172577 082__ $$a540
000172577 1001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b0$$eCorresponding Author$$ufzj
000172577 245__ $$aNanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells
000172577 260__ $$aWashington, DC$$bACS Publ.$$c2014
000172577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1416320799_15224
000172577 3367_ $$2DataCite$$aOutput Types/Journal article
000172577 3367_ $$00$$2EndNote$$aJournal Article
000172577 3367_ $$2BibTeX$$aARTICLE
000172577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172577 3367_ $$2DRIVER$$aarticle
000172577 520__ $$aNanophotonic light management concepts are on the way to advance photovoltaic technologies and accelerate their economical breakthrough. Most of these concepts make use of the coupling of incident sunlight to waveguide modes via nanophotonic structures such as photonic crystals, nanowires, or plasmonic gratings. Experimentally, light coupling to these modes was so far exclusively investigated with indirect and macroscopic methods, and thus, the nanoscale physics of light coupling and propagation of waveguide modes remain vague. In this contribution, we present a nanoscopic observation of light coupling to waveguide modes in a nanophotonic thin-film silicon solar cell. Making use of the subwavelength resolution of the scanning near-field optical microscopy, we resolve the electric field intensities of a propagating waveguide mode at the surface of a state-of-the-art nanophotonic thin-film solar cell. We identify the resonance condition for light coupling to this individual waveguide mode and associate it to a pronounced resonance in the external quantum efficiency that is found to increase significantly the power conversion efficiency of the device. We show that a maximum of the incident light couples to the investigated waveguide mode if the period of the electric field intensity of the waveguide mode matches the periodicity of the nanophotonic twodimensional grating. Our novel experimental approach establishes experimental access to the local analysis of light coupling to waveguide modes in a number of optoelectronic devices concerned with nanophotonic light-trapping as well as nanophotonic light emission.
000172577 536__ $$0G:(DE-HGF)POF2-111$$a111 - Thin Film Photovoltaics (POF2-111)$$cPOF2-111$$fPOF II$$x0
000172577 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172577 7001_ $$0P:(DE-Juel1)130264$$aLehnen, Stephan$$b1$$ufzj
000172577 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b2$$ufzj
000172577 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b3$$ufzj
000172577 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b4$$ufzj
000172577 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/nl503249n$$gVol. 14, no. 11, p. 6599 - 6605$$n11$$p6599 - 6605$$tNano letters$$v14$$x1530-6992$$y2014
000172577 8564_ $$uhttps://juser.fz-juelich.de/record/172577/files/FZJ-2014-06040.pdf$$yRestricted
000172577 909CO $$ooai:juser.fz-juelich.de:172577$$pVDB
000172577 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172577 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172577 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172577 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172577 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172577 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172577 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172577 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172577 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172577 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000172577 9141_ $$y2014
000172577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130264$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172577 9132_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bPOF III$$lForschungsbereich Materie$$vohne Programm$$x0
000172577 9131_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000172577 920__ $$lyes
000172577 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000172577 980__ $$ajournal
000172577 980__ $$aVDB
000172577 980__ $$aI:(DE-Juel1)IEK-5-20101013
000172577 980__ $$aUNRESTRICTED
000172577 981__ $$aI:(DE-Juel1)IMD-3-20101013