001     172577
005     20240712084505.0
024 7 _ |a 10.1021/nl503249n
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000345723800090
|2 WOS
024 7 _ |a altmetric:2927972
|2 altmetric
024 7 _ |a pmid:25350265
|2 pmid
037 _ _ |a FZJ-2014-06040
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)130282
|a Paetzold, Ulrich W.
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Nanoscale Observation of Waveguide Modes Enhancing the Efficiency of Solar Cells
260 _ _ |a Washington, DC
|b ACS Publ.
|c 2014
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1416320799_15224
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
520 _ _ |a Nanophotonic light management concepts are on the way to advance photovoltaic technologies and accelerate their economical breakthrough. Most of these concepts make use of the coupling of incident sunlight to waveguide modes via nanophotonic structures such as photonic crystals, nanowires, or plasmonic gratings. Experimentally, light coupling to these modes was so far exclusively investigated with indirect and macroscopic methods, and thus, the nanoscale physics of light coupling and propagation of waveguide modes remain vague. In this contribution, we present a nanoscopic observation of light coupling to waveguide modes in a nanophotonic thin-film silicon solar cell. Making use of the subwavelength resolution of the scanning near-field optical microscopy, we resolve the electric field intensities of a propagating waveguide mode at the surface of a state-of-the-art nanophotonic thin-film solar cell. We identify the resonance condition for light coupling to this individual waveguide mode and associate it to a pronounced resonance in the external quantum efficiency that is found to increase significantly the power conversion efficiency of the device. We show that a maximum of the incident light couples to the investigated waveguide mode if the period of the electric field intensity of the waveguide mode matches the periodicity of the nanophotonic twodimensional grating. Our novel experimental approach establishes experimental access to the local analysis of light coupling to waveguide modes in a number of optoelectronic devices concerned with nanophotonic light-trapping as well as nanophotonic light emission.
536 _ _ |0 G:(DE-HGF)POF2-111
|a 111 - Thin Film Photovoltaics (POF2-111)
|c POF2-111
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)130264
|a Lehnen, Stephan
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130219
|a Bittkau, Karsten
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)143905
|a Rau, Uwe
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130225
|a Carius, Reinhard
|b 4
|u fzj
773 _ _ |0 PERI:(DE-600)2048866-X
|a 10.1021/nl503249n
|g Vol. 14, no. 11, p. 6599 - 6605
|n 11
|p 6599 - 6605
|t Nano letters
|v 14
|x 1530-6992
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/172577/files/FZJ-2014-06040.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172577
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130282
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130264
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130219
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143905
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130225
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
913 2 _ |0 G:(DE-HGF)POF3-899
|1 G:(DE-HGF)POF3-890
|2 G:(DE-HGF)POF3-800
|a DE-HGF
|b POF III
|l Forschungsbereich Materie
|v ohne Programm
|x 0
913 1 _ |0 G:(DE-HGF)POF2-111
|1 G:(DE-HGF)POF2-110
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Erneuerbare Energien
|v Thin Film Photovoltaics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21