000172581 001__ 172581
000172581 005__ 20240712100835.0
000172581 0247_ $$2doi$$a10.5194/gmd-7-2639-2014
000172581 0247_ $$2ISSN$$a1991-959X
000172581 0247_ $$2ISSN$$a1991-9603
000172581 0247_ $$2WOS$$aWOS:000346142200006
000172581 0247_ $$2Handle$$a2128/9104
000172581 037__ $$aFZJ-2014-06044
000172581 082__ $$a910
000172581 1001_ $$0P:(DE-Juel1)144192$$aHoppe, Charlotte$$b0$$eCorresponding Author$$ufzj
000172581 245__ $$aThe implementation of the CLaMS Lagrangian transport core into the chemistry climate model EMAC 2.40.1: application on age of air and transport of long-lived trace species
000172581 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2014
000172581 3367_ $$2DRIVER$$aarticle
000172581 3367_ $$2DataCite$$aOutput Types/Journal article
000172581 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520844753_25962
000172581 3367_ $$2BibTeX$$aARTICLE
000172581 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172581 3367_ $$00$$2EndNote$$aJournal Article
000172581 520__ $$aLagrangian transport schemes have proven to be useful tools for modelling stratospheric trace gas transport since they are less diffusive than classical Eulerian schemes and therefore especially well suited for maintaining steep tracer gradients. Here, we present the implementation of the full-Lagrangian transport core of the Chemical Lagrangian Model of the Stratosphere (CLaMS) into the ECHAM/MESSy Atmospheric Chemistry model (EMAC). We performed a 10-year time-slice simulation to evaluate the coupled model system EMAC/CLaMS. Simulated zonal mean age of air distributions are compared to age of air derived from airborne measurements, showing a good overall representation of the stratospheric circulation. Results from the new Lagrangian transport scheme are compared to tracer distributions calculated with the standard flux-form semi-Lagrangian (FFSL) transport scheme in EMAC. The differences in the resulting tracer distributions are most pronounced in the regions of strong transport barriers. The polar vortices are presented as an example for isolated air masses which are surrounded by a strong transport barrier and simulated trace gas distributions are compared to satellite measurements. The analysis of CFC-11, N2O, CH4, and age of air in the polar vortex regions shows that the CLaMS Lagrangian transport scheme produces a stronger, more realistic transport barrier at the edge of the polar vortex than the FFSL transport scheme of EMAC. Differences in simulated age of air range up to 1 year in the Arctic polar vortex in late winter/early spring. The new coupled model system EMAC/CLaMS thus constitutes a suitable tool for future model studies of stratospheric tracer transport.
000172581 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000172581 536__ $$0G:(DE-Juel1)jiek71_20110501$$aA Lagrangian Transport Core for the ECHAM/MESSy Climate Model (jiek71_20110501)$$cjiek71_20110501$$fA Lagrangian Transport Core for the ECHAM/MESSy Climate Model$$x1
000172581 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172581 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b1
000172581 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b2
000172581 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b3
000172581 7001_ $$0P:(DE-Juel1)129141$$aPloeger, F.$$b4
000172581 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b5
000172581 7001_ $$0P:(DE-HGF)0$$aJöckel, P.$$b6
000172581 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b7
000172581 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-7-2639-2014$$gVol. 7, no. 6, p. 2639 - 2651$$n6$$p2639 - 2651$$tGeoscientific model development$$v7$$x1991-9603$$y2014
000172581 8564_ $$uhttps://juser.fz-juelich.de/record/172581/files/FZJ-2014-06044.pdf$$yOpenAccess
000172581 909CO $$ooai:juser.fz-juelich.de:172581$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144192$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000172581 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data$$x0
000172581 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000172581 9141_ $$y2014
000172581 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000172581 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172581 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172581 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000172581 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000172581 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172581 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172581 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172581 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172581 920__ $$lyes
000172581 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000172581 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x1
000172581 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000172581 9801_ $$aFullTexts
000172581 980__ $$ajournal
000172581 980__ $$aVDB
000172581 980__ $$aI:(DE-Juel1)JSC-20090406
000172581 980__ $$aI:(DE-Juel1)IEK-7-20101013
000172581 980__ $$aI:(DE-82)080012_20140620
000172581 980__ $$aUNRESTRICTED
000172581 981__ $$aI:(DE-Juel1)ICE-4-20101013
000172581 981__ $$aI:(DE-Juel1)IEK-7-20101013