000172587 001__ 172587
000172587 005__ 20240625095030.0
000172587 0247_ $$2doi$$a10.1103/PhysRevB.89.155109
000172587 0247_ $$2Handle$$a2128/8103
000172587 0247_ $$2WOS$$aWOS:000334117500002
000172587 0247_ $$2altmetric$$aaltmetric:1994529
000172587 037__ $$aFZJ-2014-06050
000172587 082__ $$a530
000172587 1001_ $$0P:(DE-HGF)0$$aAutieri, C.$$b0$$eCorresponding Author
000172587 245__ $$aMechanism of structural phase transitions in KCrF$_{3}$
000172587 260__ $$aCollege Park, Md.$$bAPS$$c2014
000172587 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s172587
000172587 3367_ $$2DataCite$$aOutput Types/Journal article
000172587 3367_ $$00$$2EndNote$$aJournal Article
000172587 3367_ $$2BibTeX$$aARTICLE
000172587 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172587 3367_ $$2DRIVER$$aarticle
000172587 520__ $$aWe study the origin of the cubic to tetragonal and tetragonal to monoclinic structural transitions in KCrF3, and the associated change in orbital order, paying particular attention to the relevance of super-exchange in both phases. We show that super-exchange is not the main mechanism driving these transitions. Specifically, it is not strong enough to be responsible for the high-temperature cubic to tetragonal transition and does not yield the type of orbital order observed in the monoclinic phase. The energy difference between the tetragonal and the monoclinic structure is tiny, and most likely results from the interplay between volume, covalency, and localization effects. The transition is rather driven by Slater exchange than super-exchange. Nevertheless, once the monoclinic distortions are present, super-exchange helps in stabilizing the low-symmetry structure. The orbital order we obtain for this monoclinic phase is consistent with the magnetic transition at 80 K.
000172587 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000172587 542__ $$2Crossref$$i2014-04-08$$uhttp://link.aps.org/licenses/aps-default-license
000172587 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$ufzj
000172587 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b2$$ufzj
000172587 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.89.155109$$bAmerican Physical Society (APS)$$d2014-04-08$$n15$$p155109$$tPhysical Review B$$v89$$x1098-0121$$y2014
000172587 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.89.155109$$n15$$p155109$$tPhysical review / B$$v89$$x1098-0121$$y2014
000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.pdf$$yOpenAccess
000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000172587 909CO $$ooai:juser.fz-juelich.de:172587$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000172587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172587 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000172587 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000172587 9141_ $$y2014
000172587 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000172587 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172587 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172587 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172587 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172587 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172587 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172587 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172587 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172587 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172587 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172587 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172587 920__ $$lyes
000172587 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0
000172587 9801_ $$aFullTexts
000172587 980__ $$ajournal
000172587 980__ $$aVDB
000172587 980__ $$aUNRESTRICTED
000172587 980__ $$aFullTexts
000172587 980__ $$aI:(DE-Juel1)IAS-3-20090406
000172587 981__ $$aI:(DE-Juel1)PGI-2-20110106
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja0669272
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b700487g
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.094437
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.075113
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.014109
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2908740
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.266405
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.086402
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.035124
000172587 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973
000172587 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.R3189
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.144406
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.247202
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/9/35/010
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.6884
000172587 999C5 $$2Crossref$$oThe LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.943
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.16929
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.R5467
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.commatsci.2007.07.020
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2009.07.007
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/7/1/188
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.13545
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.184413
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.035105
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.5368
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.2521
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.195141
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.166401
000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.014425