000172587 001__ 172587 000172587 005__ 20240625095030.0 000172587 0247_ $$2doi$$a10.1103/PhysRevB.89.155109 000172587 0247_ $$2Handle$$a2128/8103 000172587 0247_ $$2WOS$$aWOS:000334117500002 000172587 0247_ $$2altmetric$$aaltmetric:1994529 000172587 037__ $$aFZJ-2014-06050 000172587 082__ $$a530 000172587 1001_ $$0P:(DE-HGF)0$$aAutieri, C.$$b0$$eCorresponding Author 000172587 245__ $$aMechanism of structural phase transitions in KCrF$_{3}$ 000172587 260__ $$aCollege Park, Md.$$bAPS$$c2014 000172587 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s172587 000172587 3367_ $$2DataCite$$aOutput Types/Journal article 000172587 3367_ $$00$$2EndNote$$aJournal Article 000172587 3367_ $$2BibTeX$$aARTICLE 000172587 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000172587 3367_ $$2DRIVER$$aarticle 000172587 520__ $$aWe study the origin of the cubic to tetragonal and tetragonal to monoclinic structural transitions in KCrF3, and the associated change in orbital order, paying particular attention to the relevance of super-exchange in both phases. We show that super-exchange is not the main mechanism driving these transitions. Specifically, it is not strong enough to be responsible for the high-temperature cubic to tetragonal transition and does not yield the type of orbital order observed in the monoclinic phase. The energy difference between the tetragonal and the monoclinic structure is tiny, and most likely results from the interplay between volume, covalency, and localization effects. The transition is rather driven by Slater exchange than super-exchange. Nevertheless, once the monoclinic distortions are present, super-exchange helps in stabilizing the low-symmetry structure. The orbital order we obtain for this monoclinic phase is consistent with the magnetic transition at 80 K. 000172587 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0 000172587 542__ $$2Crossref$$i2014-04-08$$uhttp://link.aps.org/licenses/aps-default-license 000172587 7001_ $$0P:(DE-Juel1)130763$$aKoch, Erik$$b1$$ufzj 000172587 7001_ $$0P:(DE-Juel1)130881$$aPavarini, Eva$$b2$$ufzj 000172587 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.89.155109$$bAmerican Physical Society (APS)$$d2014-04-08$$n15$$p155109$$tPhysical Review B$$v89$$x1098-0121$$y2014 000172587 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.89.155109$$n15$$p155109$$tPhysical review / B$$v89$$x1098-0121$$y2014 000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.pdf$$yOpenAccess 000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-144$$xicon-144$$yOpenAccess 000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000172587 8564_ $$uhttps://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000172587 909CO $$ooai:juser.fz-juelich.de:172587$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000172587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130763$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000172587 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130881$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000172587 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0 000172587 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0 000172587 9141_ $$y2014 000172587 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000172587 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000172587 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000172587 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000172587 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000172587 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000172587 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000172587 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000172587 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000172587 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000172587 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000172587 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000172587 920__ $$lyes 000172587 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x0 000172587 9801_ $$aFullTexts 000172587 980__ $$ajournal 000172587 980__ $$aVDB 000172587 980__ $$aUNRESTRICTED 000172587 980__ $$aFullTexts 000172587 980__ $$aI:(DE-Juel1)IAS-3-20090406 000172587 981__ $$aI:(DE-Juel1)PGI-2-20110106 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja0669272 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b700487g 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.094437 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.075113 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.014109 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2908740 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.266405 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.086402 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.035124 000172587 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973 000172587 999C5 $$1K. I. Kugel$$2Crossref$$oK. I. Kugel 1973$$y1973 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.R3189 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.144406 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.247202 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/9/35/010 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.6884 000172587 999C5 $$2Crossref$$oThe LDA+DMFT Approach to Strongly Correlated Materials 2011$$tThe LDA+DMFT Approach to Strongly Correlated Materials$$y2011 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.943 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.16929 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.R5467 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.commatsci.2007.07.020 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2009.07.007 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/7/1/188 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.13545 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.184413 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.035105 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.5368 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.56.2521 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.349 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.195141 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.166401 000172587 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.014425