001     172587
005     20240625095030.0
024 7 _ |a 10.1103/PhysRevB.89.155109
|2 doi
024 7 _ |a 2128/8103
|2 Handle
024 7 _ |a WOS:000334117500002
|2 WOS
024 7 _ |a altmetric:1994529
|2 altmetric
037 _ _ |a FZJ-2014-06050
082 _ _ |a 530
100 1 _ |a Autieri, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Mechanism of structural phase transitions in KCrF$_{3}$
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 172587
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We study the origin of the cubic to tetragonal and tetragonal to monoclinic structural transitions in KCrF3, and the associated change in orbital order, paying particular attention to the relevance of super-exchange in both phases. We show that super-exchange is not the main mechanism driving these transitions. Specifically, it is not strong enough to be responsible for the high-temperature cubic to tetragonal transition and does not yield the type of orbital order observed in the monoclinic phase. The energy difference between the tetragonal and the monoclinic structure is tiny, and most likely results from the interplay between volume, covalency, and localization effects. The transition is rather driven by Slater exchange than super-exchange. Nevertheless, once the monoclinic distortions are present, super-exchange helps in stabilizing the low-symmetry structure. The orbital order we obtain for this monoclinic phase is consistent with the magnetic transition at 80 K.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2014-04-08
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
700 1 _ |a Koch, Erik
|0 P:(DE-Juel1)130763
|b 1
|u fzj
700 1 _ |a Pavarini, Eva
|0 P:(DE-Juel1)130881
|b 2
|u fzj
773 1 8 |a 10.1103/physrevb.89.155109
|b American Physical Society (APS)
|d 2014-04-08
|n 15
|p 155109
|3 journal-article
|2 Crossref
|t Physical Review B
|v 89
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.89.155109
|0 PERI:(DE-600)2844160-6
|n 15
|p 155109
|t Physical review / B
|v 89
|y 2014
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.pdf
856 4 _ |u https://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172587/files/FZJ-2014-06050.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172587
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130763
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130881
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
999 C 5 |a 10.1021/ja0669272
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b700487g
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.094437
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.075113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.014109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2908740
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.266405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.086402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.035124
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 K. I. Kugel
|y 1973
|2 Crossref
|o K. I. Kugel 1973
999 C 5 |1 K. I. Kugel
|y 1973
|2 Crossref
|o K. I. Kugel 1973
999 C 5 |a 10.1103/PhysRevB.57.R3189
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.144406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.247202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/9/35/010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.6884
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 2011
|2 Crossref
|t The LDA+DMFT Approach to Strongly Correlated Materials
|o The LDA+DMFT Approach to Strongly Correlated Materials 2011
999 C 5 |a 10.1103/PhysRevB.44.943
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.48.16929
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.R5467
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.commatsci.2007.07.020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2009.07.007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.1758
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2007.11.016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/7/1/188
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.13545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.184413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.035105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.5368
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.56.2521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.83.349
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.195141
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.166401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.014425
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21