001     172683
005     20250129094239.0
024 7 _ |a 10.1088/0953-8984/26/48/485401
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a WOS:000345221700019
|2 WOS
037 _ _ |a FZJ-2014-06135
082 _ _ |a 530
100 1 _ |a Bessas, D.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a Lattice dynamics in intermetallic Mg 2 Ge and Mg 2 Si424
260 _ _ |a Bristol
|c 2014
|b IOP Publ.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1416495447_11270
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The lattice dynamics of polycrystalline Mg2Ge and Mg2Si are compared using both microscopic and macroscopic measurements as well as theoretical calculations. The volume thermal expansion coefficient between 200 and 300 K was found to be 4.37(5) centerdot 10−5 K−1 in Mg2Ge, compared to 3.69(5) centerdot 10−5 K−1 in Mg2Si. Inelastic neutron scattering measurements yield densities of phonon states which are in line with theoretical calculations. The microscopic data were corroborated with macroscopic calorimetry measurements and provide quantified values for anharmonicity. The estimated macroscopic Grüneisen parameter is, γMg2Si = 1.17(5) and γMg2Ge = 1.46(5) at 295 K, in excellent agreement with Raman scattering data. Although the element specific mean force constants are practically the same, in Mg2Ge and Mg2Si, a mass homology relation alone cannot reproduce the difference in the partial densities of vibrational states in these compounds and differences in elemental bonding should be taken into account.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
536 _ _ |a 424 - Exploratory materials and phenomena (POF2-424)
|0 G:(DE-HGF)POF2-424
|c POF2-424
|f POF II
|x 1
536 _ _ |a 542 - Neutrons (POF2-542)
|0 G:(DE-HGF)POF2-542
|c POF2-542
|f POF II
|x 2
536 _ _ |a 544 - In-house Research with PNI (POF2-544)
|0 G:(DE-HGF)POF2-544
|c POF2-544
|f POF II
|x 3
536 _ _ |a 54G - JCNS (POF2-54G24)
|0 G:(DE-HGF)POF2-54G24
|c POF2-54G24
|f POF II
|x 4
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
693 _ _ |0 EXP:(DE-MLZ)External-20140101
|5 EXP:(DE-MLZ)External-20140101
|e External Measurement
|x 0
700 1 _ |a Simon, R. E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Friese, K.
|0 P:(DE-Juel1)145694
|b 2
|u fzj
700 1 _ |a Koza, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hermann, R. P.
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1088/0953-8984/26/48/485401
|g Vol. 26, no. 48, p. 485401 -
|0 PERI:(DE-600)1472968-4
|n 48
|p 485401 -
|t Journal of physics / Condensed matter
|v 26
|y 2014
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/172683/files/FZJ-2014-06135.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:172683
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145694
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 2 _ |a DE-HGF
|b POF III
|l Key Technologies
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 1
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Materie
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Von Materie zu Materialien und Leben
|9 G:(DE-HGF)POF3-6G4
|x 2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-424
|2 G:(DE-HGF)POF2-400
|v Exploratory materials and phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-542
|2 G:(DE-HGF)POF2-500
|v Neutrons
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|v In-house Research with PNI
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
913 1 _ |a DE-HGF
|b Struktur der Materie
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-54G24
|2 G:(DE-HGF)POF2-500
|v JCNS
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2014
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21