000172713 001__ 172713
000172713 005__ 20240711085620.0
000172713 0247_ $$2doi$$a10.1016/j.ssi.2012.03.048
000172713 0247_ $$2ISSN$$a0167-2738
000172713 0247_ $$2ISSN$$a1872-7689
000172713 0247_ $$2WOS$$aWOS:000311873400022
000172713 037__ $$aFZJ-2014-06158
000172713 082__ $$a530
000172713 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding Author$$ufzj
000172713 245__ $$aComparison of Y and La-substituted SrTiO$_{3}$ as the anode materials for SOFCs
000172713 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000172713 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417092459_32495
000172713 3367_ $$2DataCite$$aOutput Types/Journal article
000172713 3367_ $$00$$2EndNote$$aJournal Article
000172713 3367_ $$2BibTeX$$aARTICLE
000172713 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172713 3367_ $$2DRIVER$$aarticle
000172713 520__ $$aY0.07Sr0.895TiO3 (YST) and La0.2Sr0.7TiO3 (LST) samples sintered and reduced at different temperatures were prepared. The conductivity and chemical expansion of the samples were tested. It was found that the combination of high conductivity and low chemical expansion therefore represents a conflict of material properties for YST and LST samples. The relationship between chemical expansion and sample cracking is discussed. The conductivity of the samples against redox cycles was also tested. Properties with respect to SOFC requirements were compared between LST and YST samples. Suitable preparation conditions for YST and LST as SOFC anode materials were optimized.
000172713 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000172713 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172713 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000172713 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000172713 693__ $$0EXP:(DE-MLZ)External-20140101$$5EXP:(DE-MLZ)External-20140101$$eExternal Measurement$$x0
000172713 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1$$ufzj
000172713 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2012.03.048$$gVol. 225, p. 108 - 112$$p108 - 112$$tSolid state ionics$$v225$$x0167-2738$$y2012
000172713 8564_ $$uhttps://juser.fz-juelich.de/record/172713/files/FZJ-2014-06158.pdf$$yRestricted
000172713 909CO $$ooai:juser.fz-juelich.de:172713$$pVDB
000172713 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172713 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172713 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172713 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172713 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172713 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172713 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172713 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172713 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172713 9141_ $$y2014
000172713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172713 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172713 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vSpeicher und vernetzte Infrastrukturen$$x0
000172713 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000172713 920__ $$lyes
000172713 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000172713 980__ $$ajournal
000172713 980__ $$aVDB
000172713 980__ $$aI:(DE-Juel1)IEK-1-20101013
000172713 980__ $$aUNRESTRICTED
000172713 981__ $$aI:(DE-Juel1)IMD-2-20101013