001     17272
005     20190625110714.0
024 7 _ |2 DOI
|a 10.1038/nphys2045
024 7 _ |2 WOS
|a WOS:000294485400019
024 7 _ |a altmetric:203147
|2 altmetric
037 _ _ |a PreJuSER-17272
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |0 P:(DE-HGF)0
|a Heinze, S.
|b 0
245 _ _ |a Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 14921
|a Nature Physics
|v 7
|x 1745-2473
|y 713 - 718
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a S.H. thanks the Stifterverband fur die Deutsche Wissenschaft for financial support. K. v. B., M. M., J.B., A. K. and R. W. thank the SFB668, the ERC Advanced Grant FURORE and the Landesexzellenzcluster Nanospintronics for financial support.
520 _ _ |a Skyrmions are topologically protected field configurations with particle-like properties that play an important role in various fields of science. Recently, skyrmions have been observed to be stabilized by an external magnetic field in bulk magnets. Here, we describe a two-dimensional square lattice of skyrmions on the atomic length scale as the magnetic ground state of a hexagonal Fe film of one-atomic-layer thickness on the Ir(111) surface. Using spin-polarized scanning tunnelling microscopy we can directly image this non-collinear spin texture in real space on the atomic scale and demonstrate that it is incommensurate to the underlying atomic lattice. With the aid of first-principles calculations, we develop a spin model on a discrete lattice that identifies the interplay of Heisenberg exchange, the four-spin and the Dzyaloshinskii-Moriya interaction as the microscopic origin of this magnetic state.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a von Bergmann, K.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Menzel, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Brede, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kubetzka, A.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Wiesendanger, R.
|b 5
700 1 _ |0 P:(DE-Juel1)130545
|a Bihlmayer, G.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)2206346-8
|a 10.1038/nphys2045
|g Vol. 7
|q 7
|t Nature physics
|v 7
|x 1745-2473
|y 2011
856 7 _ |u http://dx.doi.org/10.1038/nphys2045
909 C O |o oai:juser.fz-juelich.de:17272
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)131707
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21