000172720 001__ 172720
000172720 005__ 20240708133630.0
000172720 0247_ $$2doi$$a10.1117/1.JPE.5.057004
000172720 0247_ $$2ISSN$$a1947-7988
000172720 0247_ $$2ISSN$$aundefined
000172720 0247_ $$2WOS$$aWOS:000359851000001
000172720 037__ $$aFZJ-2014-06164
000172720 082__ $$a620
000172720 1001_ $$0P:(DE-Juel1)157887$$aSmeets, Michael$$b0$$eCorresponding Author$$ufzj
000172720 245__ $$aOn the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells
000172720 260__ $$aBellingham Wash.$$bSPIE$$c2015
000172720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1416814887_16933
000172720 3367_ $$2DataCite$$aOutput Types/Journal article
000172720 3367_ $$00$$2EndNote$$aJournal Article
000172720 3367_ $$2BibTeX$$aARTICLE
000172720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172720 3367_ $$2DRIVER$$aarticle
000172720 520__ $$aWe experimentally investigate the light-trapping effect of plasmonic reflection grating back contacts in prototype hydrogenated amorphous silicon thin-film solar cells in substrate configuration. These back contacts consist of periodically arranged Ag nanostructures on flat Ag reflectors. We vary the period, unit cell, and width of the nanostructures to identify design strategies for optimized light trapping. First, a general correlation between the reduction of the period of the nanostructures down to 550 nm and an increase of the absorptance, as well as external quantum efficiency is found for various unit cells formed by nanostructures. Second, increasing the width of the nanostructures from 200 to 350 nm, an enhanced light-trapping effect of the thin-film solar cells is found independent of the period. As a result, we identify a design for improved light trapping for the given solar cell parameters within the considered variations. It consists of thin-film solar cells applying a combination of a period of 600 nm and a structure width of 350 nm. The implementation of back contacts with this configuration yields enhanced power conversion efficiency as compared to reference solar cells processed on conventionally used randomly textured substrates. In detail, the enhancement of the short-circuit current density from initially 14.7 to initially 15.6  mA/cm2 improves the power conversion efficiency from 9.1 to 9.3%.
000172720 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000172720 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000172720 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172720 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, Vladimir$$b1$$ufzj
000172720 7001_ $$0P:(DE-Juel1)130830$$aMeier, Matthias$$b2$$ufzj
000172720 7001_ $$0P:(DE-Juel1)130219$$aBittkau, Karsten$$b3$$ufzj
000172720 7001_ $$0P:(DE-Juel1)130225$$aCarius, Reinhard$$b4$$ufzj
000172720 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b5$$ufzj
000172720 7001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich W.$$b6$$ufzj
000172720 773__ $$0PERI:(DE-600)2588205-3$$a10.1117/1.JPE.5.057004$$gVol. 5, no. 1, p. 057004 -$$n1$$p057004$$tJournal of photonics for energy$$v5$$x1947-7988$$y2015
000172720 909CO $$ooai:juser.fz-juelich.de:172720$$pVDB
000172720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172720 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172720 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172720 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000172720 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172720 9141_ $$y2015
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157887$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130830$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130219$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130225$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000172720 9130_ $$0G:(DE-HGF)POF2-111$$1G:(DE-HGF)POF2-110$$2G:(DE-HGF)POF2-100$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vThin Film Photovoltaics$$x0
000172720 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000172720 920__ $$lyes
000172720 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000172720 980__ $$ajournal
000172720 980__ $$aVDB
000172720 980__ $$aI:(DE-Juel1)IEK-5-20101013
000172720 980__ $$aUNRESTRICTED
000172720 981__ $$aI:(DE-Juel1)IMD-3-20101013