001     172720
005     20240708133630.0
024 7 _ |2 doi
|a 10.1117/1.JPE.5.057004
024 7 _ |2 ISSN
|a 1947-7988
024 7 _ |2 ISSN
|a undefined
024 7 _ |2 WOS
|a WOS:000359851000001
037 _ _ |a FZJ-2014-06164
082 _ _ |a 620
100 1 _ |0 P:(DE-Juel1)157887
|a Smeets, Michael
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a On the geometry of plasmonic reflection grating back contacts for light trapping in prototype amorphous silicon thin-film solar cells
260 _ _ |a Bellingham Wash.
|b SPIE
|c 2015
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1416814887_16933
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a We experimentally investigate the light-trapping effect of plasmonic reflection grating back contacts in prototype hydrogenated amorphous silicon thin-film solar cells in substrate configuration. These back contacts consist of periodically arranged Ag nanostructures on flat Ag reflectors. We vary the period, unit cell, and width of the nanostructures to identify design strategies for optimized light trapping. First, a general correlation between the reduction of the period of the nanostructures down to 550 nm and an increase of the absorptance, as well as external quantum efficiency is found for various unit cells formed by nanostructures. Second, increasing the width of the nanostructures from 200 to 350 nm, an enhanced light-trapping effect of the thin-film solar cells is found independent of the period. As a result, we identify a design for improved light trapping for the given solar cell parameters within the considered variations. It consists of thin-film solar cells applying a combination of a period of 600 nm and a structure width of 350 nm. The implementation of back contacts with this configuration yields enhanced power conversion efficiency as compared to reference solar cells processed on conventionally used randomly textured substrates. In detail, the enhancement of the short-circuit current density from initially 14.7 to initially 15.6  mA/cm2 improves the power conversion efficiency from 9.1 to 9.3%.
536 _ _ |0 G:(DE-HGF)POF3-121
|a 121 - Solar cells of the next generation (POF3-121)
|c POF3-121
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)130297
|a Smirnov, Vladimir
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)130830
|a Meier, Matthias
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)130219
|a Bittkau, Karsten
|b 3
|u fzj
700 1 _ |0 P:(DE-Juel1)130225
|a Carius, Reinhard
|b 4
|u fzj
700 1 _ |0 P:(DE-Juel1)143905
|a Rau, Uwe
|b 5
|u fzj
700 1 _ |0 P:(DE-Juel1)130282
|a Paetzold, Ulrich W.
|b 6
|u fzj
773 _ _ |0 PERI:(DE-600)2588205-3
|a 10.1117/1.JPE.5.057004
|g Vol. 5, no. 1, p. 057004 -
|n 1
|p 057004
|t Journal of photonics for energy
|v 5
|x 1947-7988
|y 2015
909 C O |o oai:juser.fz-juelich.de:172720
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)157887
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130297
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130830
|a Forschungszentrum Jülich GmbH
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130219
|a Forschungszentrum Jülich GmbH
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130225
|a Forschungszentrum Jülich GmbH
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)143905
|a Forschungszentrum Jülich GmbH
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130282
|a Forschungszentrum Jülich GmbH
|b 6
|k FZJ
913 0 _ |0 G:(DE-HGF)POF2-111
|1 G:(DE-HGF)POF2-110
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|l Erneuerbare Energien
|v Thin Film Photovoltaics
|x 0
913 1 _ |0 G:(DE-HGF)POF3-121
|1 G:(DE-HGF)POF3-120
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|x 0
|v Solar cells of the next generation
|l Erneuerbare Energien
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1160
|2 StatID
|a DBCoverage
|b Current Contents - Engineering, Computing and Technology
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21