000172756 001__ 172756
000172756 005__ 20240625095033.0
000172756 0247_ $$2doi$$a10.1103/PhysRevB.90.144417
000172756 0247_ $$2ISSN$$a0163-1829
000172756 0247_ $$2ISSN$$a0556-2805
000172756 0247_ $$2ISSN$$a1095-3795
000172756 0247_ $$2ISSN$$a1098-0121
000172756 0247_ $$2ISSN$$a1550-235X
000172756 0247_ $$2Handle$$a2128/8114
000172756 0247_ $$2WOS$$aWOS:000343304200001
000172756 037__ $$aFZJ-2014-06199
000172756 082__ $$a530
000172756 1001_ $$0P:(DE-Juel1)136909$$aFukushima, T.$$b0$$eCorresponding Author$$ufzj
000172756 245__ $$aFirst-principles study of magnetic interactions in $3d$ transition metal-doped phase-change materials
000172756 260__ $$aCollege Park, Md.$$bAPS$$c2014
000172756 3367_ $$2DRIVER$$aarticle
000172756 3367_ $$2DataCite$$aOutput Types/Journal article
000172756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552576378_30252
000172756 3367_ $$2BibTeX$$aARTICLE
000172756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172756 3367_ $$00$$2EndNote$$aJournal Article
000172756 520__ $$aRecently, magnetic phase-change materials have been synthesized experimentally by doping with 3d transition metal impurities. Here, we investigate the electronic structure and the magnetic properties of the prototypical phase-change material Ge2Sb2Te5 (GST) doped with V, Cr, Mn, and Fe by density functional calculations. Both the supercell method and the coherent potential approximation (CPA) are employed to describe this complex substitutionally disordered system. As regards the first approach, we consider a large unit cell containing 1000 sites to model the random distribution of the cations and of the impurities in doped cubic GST. Such a large-scale electronic structure calculation is performed using the program kkrnano, where the full potential screened Korringa-Kohn-Rostoker Green's function method is optimized by a massively parallel linear scaling (order-N) all-electron algorithm. Overall, the electronic structures and magnetic exchange coupling constants calculated by kkrnano agree quite well with the CPA results. We find that ferromagnetic states are favorable in the cases of V and Cr doping, due to the double exchange mechanism, whereas antiferromagnetic superexchange interactions appear to be dominant for Fe- and Mn-doped GST. The ferromagnetic interaction is particularly strong in the case of Cr. As a result, high Curie temperatures close to room temperatures are obtained for large Cr concentrations of 15%.
000172756 536__ $$0G:(DE-HGF)POF2-422$$a422 - Spin-based and quantum information (POF2-422)$$cPOF2-422$$fPOF II$$x0
000172756 536__ $$0G:(DE-Juel1)jiff02_20120501$$aQuantum description of nanoscale processes in materials science (jiff02_20120501)$$cjiff02_20120501$$fQuantum description of nanoscale processes in materials science$$x1
000172756 542__ $$2Crossref$$i2014-10-14$$uhttp://link.aps.org/licenses/aps-default-license
000172756 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172756 7001_ $$0P:(DE-HGF)0$$aKatayama-Yoshida, H.$$b1
000172756 7001_ $$0P:(DE-HGF)0$$aSato, K.$$b2
000172756 7001_ $$0P:(DE-HGF)0$$aFujii, H.$$b3
000172756 7001_ $$0P:(DE-Juel1)144924$$aRabel, E.$$b4$$ufzj
000172756 7001_ $$0P:(DE-Juel1)131057$$aZeller, R.$$b5$$ufzj
000172756 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b6$$ufzj
000172756 7001_ $$0P:(DE-HGF)0$$aZhang, W.$$b7
000172756 7001_ $$0P:(DE-HGF)0$$aMazzarello, R.$$b8
000172756 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.90.144417$$bAmerican Physical Society (APS)$$d2014-10-14$$n14$$p144417$$tPhysical Review B$$v90$$x1098-0121$$y2014
000172756 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.90.144417$$gVol. 90, no. 14, p. 144417$$n14$$p144417$$tPhysical review / B$$v90$$x1098-0121$$y2014
000172756 8564_ $$uhttps://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.pdf$$yOpenAccess
000172756 8564_ $$uhttps://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000172756 8564_ $$uhttps://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000172756 8564_ $$uhttps://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000172756 909CO $$ooai:juser.fz-juelich.de:172756$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000172756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136909$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144924$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131057$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130612$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000172756 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000172756 9131_ $$0G:(DE-HGF)POF2-422$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSpin-based and quantum information$$x0
000172756 9141_ $$y2014
000172756 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000172756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172756 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172756 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172756 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172756 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172756 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000172756 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172756 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172756 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF <  5
000172756 920__ $$lyes
000172756 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000172756 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$kIAS-3$$lTheoretische Nanoelektronik$$x1
000172756 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x2
000172756 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000172756 9801_ $$aFullTexts
000172756 980__ $$ajournal
000172756 980__ $$aVDB
000172756 980__ $$aI:(DE-Juel1)PGI-2-20110106
000172756 980__ $$aI:(DE-Juel1)IAS-3-20090406
000172756 980__ $$aI:(DE-Juel1)IAS-1-20090406
000172756 980__ $$aI:(DE-82)080012_20140620
000172756 980__ $$aUNRESTRICTED
000172756 981__ $$aI:(DE-Juel1)PGI-2-20110106
000172756 981__ $$aI:(DE-Juel1)PGI-1-20110106
000172756 981__ $$aI:(DE-Juel1)IAS-3-20090406
000172756 981__ $$aI:(DE-Juel1)IAS-1-20090406
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2009
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1215
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2330
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1539
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.055507
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.200702282
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1166/jnn.2011.2722
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.214416
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201104746
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201201507
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.136.B864
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0031-8914(47)90013-X
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.94.1111
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.22.5777
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.42.1713
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.1633
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(87)90721-9
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.2.4715
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/PTP.46.77
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/29/294215
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.235103
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01385726
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.laa.2011.05.019
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/5/13/012
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.12.1257
000172756 999C5 $$1K. Binder$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-3-662-04685-2$$y2002
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0040-6090(99)01090-1
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/21/25/255501
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jnoncrysol.2011.12.026
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4750031
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1166/sam.2014.1938
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1884248
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.51.468
000172756 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/43/436227