001     172756
005     20240625095033.0
024 7 _ |a 10.1103/PhysRevB.90.144417
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/8114
|2 Handle
024 7 _ |a WOS:000343304200001
|2 WOS
037 _ _ |a FZJ-2014-06199
082 _ _ |a 530
100 1 _ |a Fukushima, T.
|0 P:(DE-Juel1)136909
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a First-principles study of magnetic interactions in $3d$ transition metal-doped phase-change materials
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552576378_30252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recently, magnetic phase-change materials have been synthesized experimentally by doping with 3d transition metal impurities. Here, we investigate the electronic structure and the magnetic properties of the prototypical phase-change material Ge2Sb2Te5 (GST) doped with V, Cr, Mn, and Fe by density functional calculations. Both the supercell method and the coherent potential approximation (CPA) are employed to describe this complex substitutionally disordered system. As regards the first approach, we consider a large unit cell containing 1000 sites to model the random distribution of the cations and of the impurities in doped cubic GST. Such a large-scale electronic structure calculation is performed using the program kkrnano, where the full potential screened Korringa-Kohn-Rostoker Green's function method is optimized by a massively parallel linear scaling (order-N) all-electron algorithm. Overall, the electronic structures and magnetic exchange coupling constants calculated by kkrnano agree quite well with the CPA results. We find that ferromagnetic states are favorable in the cases of V and Cr doping, due to the double exchange mechanism, whereas antiferromagnetic superexchange interactions appear to be dominant for Fe- and Mn-doped GST. The ferromagnetic interaction is particularly strong in the case of Cr. As a result, high Curie temperatures close to room temperatures are obtained for large Cr concentrations of 15%.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
536 _ _ |a Quantum description of nanoscale processes in materials science (jiff02_20120501)
|0 G:(DE-Juel1)jiff02_20120501
|c jiff02_20120501
|f Quantum description of nanoscale processes in materials science
|x 1
542 _ _ |i 2014-10-14
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Katayama-Yoshida, H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sato, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fujii, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rabel, E.
|0 P:(DE-Juel1)144924
|b 4
|u fzj
700 1 _ |a Zeller, R.
|0 P:(DE-Juel1)131057
|b 5
|u fzj
700 1 _ |a Dederichs, P. H.
|0 P:(DE-Juel1)130612
|b 6
|u fzj
700 1 _ |a Zhang, W.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Mazzarello, R.
|0 P:(DE-HGF)0
|b 8
773 1 8 |a 10.1103/physrevb.90.144417
|b American Physical Society (APS)
|d 2014-10-14
|n 14
|p 144417
|3 journal-article
|2 Crossref
|t Physical Review B
|v 90
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.90.144417
|g Vol. 90, no. 14, p. 144417
|0 PERI:(DE-600)2844160-6
|n 14
|p 144417
|t Physical review / B
|v 90
|y 2014
|x 1098-0121
856 4 _ |u https://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172756/files/FZJ-2014-06199.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172756
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)136909
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144924
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131057
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130612
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 1
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
999 C 5 |a 10.1038/nmat2009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1215
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2330
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1539
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.055507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.200702282
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/jnn.2011.2722
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.214416
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201104746
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/adma.201201507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.136.B864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.140.A1133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0031-8914(47)90013-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.94.1111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.22.5777
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.42.1713
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.82.1633
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(87)90721-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.2.4715
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/PTP.46.77
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/20/29/294215
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.235103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01385726
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.laa.2011.05.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/5/13/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.12.1257
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-662-04685-2
|1 K. Binder
|2 Crossref
|9 -- missing cx lookup --
|y 2002
999 C 5 |a 10.1016/S0040-6090(99)01090-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/21/25/255501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jnoncrysol.2011.12.026
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4750031
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/sam.2014.1938
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1884248
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.51.468
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/19/43/436227
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21