001     172757
005     20240625095033.0
024 7 _ |a 10.1103/PhysRevB.90.195424
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2128/8115
|2 Handle
024 7 _ |a WOS:000345465200005
|2 WOS
024 7 _ |a altmetric:2905496
|2 altmetric
037 _ _ |a FZJ-2014-06200
082 _ _ |a 530
100 1 _ |a Mehl, Sebastian
|0 P:(DE-Juel1)145051
|b 0
|e Corresponding Author
|u fzj
245 _ _ |a Inverted singlet-triplet qubit coded on a two-electron double quantum dot
260 _ _ |a College Park, Md.
|c 2014
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 172757
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The sz=0 spin configuration of two electrons confined at a double quantum dot (DQD) encodes the singlet-triplet qubit (STQ). We introduce the inverted STQ (ISTQ) that emerges from the setup of two quantum dots (QDs) differing significantly in size and out-of-plane magnetic fields. The strongly confined QD has a two-electron singlet ground state, but the weakly confined QD has a two-electron triplet ground state in the sz=0 subspace. Spin-orbit interactions act nontrivially on the sz=0 subspace and provide universal control of the ISTQ together with electrostatic manipulations of the charge configuration. GaAs and InAs DQDs can be operated as ISTQs under realistic noise conditions
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2014-11-19
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a DiVincenzo, David
|0 P:(DE-Juel1)143759
|b 1
|u fzj
773 1 8 |a 10.1103/physrevb.90.195424
|b American Physical Society (APS)
|d 2014-11-19
|n 19
|p 195424
|3 journal-article
|2 Crossref
|t Physical Review B
|v 90
|y 2014
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.90.195424
|g Vol. 90, no. 19, p. 195424
|0 PERI:(DE-600)2844160-6
|n 19
|p 195424
|t Physical review / B
|v 90
|y 2014
|x 1098-0121
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/172757/files/FZJ-2014-06200.pdf
856 4 _ |u https://juser.fz-juelich.de/record/172757/files/FZJ-2014-06200.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172757/files/FZJ-2014-06200.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/172757/files/FZJ-2014-06200.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172757
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145051
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143759
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2014
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|k IAS-3
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
999 C 5 |a 10.1126/science.1116955
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.79.1217
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.57.120
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.147902
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys174
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.126401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.045311
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.125337
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1856
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.035441
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1183628
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.115445
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.086804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.235318
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.161408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms4020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature13407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.112.026801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.2070
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.61.062301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.125.164
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.7320
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.45.1951
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.256801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 E. I. Rashba
|y 1960
|2 Crossref
|o E. I. Rashba 1960
999 C 5 |a 10.1103/PhysRev.100.580
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.12639
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.256801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.115324
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/b13586
|1 R. Winkler
|2 Crossref
|9 -- missing cx lookup --
|y 2010
999 C 5 |a 10.1007/BF01390750
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/S0305004100009373
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.52.3457
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.035315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.111.050502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2010.03.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.53.4288
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.4.011012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1217692
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.140504
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.134507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.080502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.109.060501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.205309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.165301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.216803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.100501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.246804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.146804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 T. Ihn
|y 2010
|2 Crossref
|t Semiconductor Nanostructures: Quantum States and Electronic Transport
|o T. Ihn Semiconductor Nanostructures: Quantum States and Electronic Transport 2010
999 C 5 |a 10.1103/RevModPhys.85.961
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3425892
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.71.075315
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21