000172763 001__ 172763
000172763 005__ 20240313094843.0
000172763 037__ $$aFZJ-2014-06206
000172763 041__ $$aEnglish
000172763 1001_ $$0P:(DE-Juel1)145897$$aSchmidt, Maximilian$$b0$$eCorresponding Author
000172763 1112_ $$aAnnual meeting of the SfN$$cWashington, DC$$d2014-11-15 - 2014-11-19$$gSfN2014$$wUSA
000172763 245__ $$aA spiking multi-area network model of macaque visual cortex
000172763 260__ $$c2014
000172763 3367_ $$033$$2EndNote$$aConference Paper
000172763 3367_ $$2BibTeX$$aINPROCEEDINGS
000172763 3367_ $$2DRIVER$$aconferenceObject
000172763 3367_ $$2ORCID$$aCONFERENCE_POSTER
000172763 3367_ $$2DataCite$$aOutput Types/Conference Poster
000172763 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1479205863_795$$xAfter Call
000172763 520__ $$aThe primate visual cortex consists of a set of specialized areas whose inter-connections have been shown to influence its dynamics both in spontaneous and driven conditions. Hitherto, models of this system have either concentrated on local detailed circuits or studied the interplay of areas, each represented by a few dynamical equations. We present a model which bridges this gap between microscopic and macroscopic dynamics by extending a spiking model of a 1mm2 patch of early sensory cortex [1] to all vision-related areas of the macaque cortex. The single-cell dynamics is kept simple in order to bring out the influence of the complex connectivity, which is based on a systematic synthesis of anatomical and electrophysiological findings. The extension to multiple areas allows us to replace random inputs to the network in part by simulated synapses, thereby increasing the self-consistency of the model. Here the immediate aim is not to address network function from a top-down perspective but to explore the relationship between network structure and fundamental multi-scale activity states.Neuron densities and laminar thicknesses are taken from available data sets or determined based on structural regularities across the cortex. The cortico-cortical connectivity is defined combining binary information from a large number of data sets collected in the CoCoMac database [2] with quantitative data from retrograde tracing studies [3], which is completed by exploiting an exponential decay of connection densities over distance [4]. Furthermore, we implement laminar connection patterns [5] and estimate missing data using a sigmoidal relation between the fraction of supragranularly originating projections and architectural types of areas [6]. We perform simulations of the system using NEST and find a broad parameter regime with asynchronous, irregular spiking across populations, characteristic of spontaneous cortical activity. The rich connectivity structure is reflected in a complex pattern of firing rates across areas and populations, where inhibitory neurons show higher activity than excitatory cells despite identical intrinsic dynamics.
000172763 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000172763 536__ $$0G:(DE-HGF)POF2-89574$$a89574 - Theory, modelling and simulation (POF2-89574)$$cPOF2-89574$$fPOF II T$$x1
000172763 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x2
000172763 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x3
000172763 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x4
000172763 536__ $$0G:(EU-Grant)604102$$aHBP - The Human Brain Project (604102)$$c604102$$fFP7-ICT-2013-FET-F$$x5
000172763 536__ $$0G:(DE-Juel1)BTN-Peta-2008-2012$$aBTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)$$cBTN-Peta-2008-2012$$fBTN-Peta-2008-2012$$x6
000172763 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x7
000172763 7001_ $$0P:(DE-Juel1)138512$$avan Albada, Sacha$$b1
000172763 7001_ $$0P:(DE-Juel1)145578$$aBakker, Rembrandt$$b2
000172763 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b3
000172763 773__ $$y2014
000172763 909CO $$ooai:juser.fz-juelich.de:172763$$popenaire$$pec_fundedresources$$pVDB
000172763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145897$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138512$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145578$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172763 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172763 9132_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vDecoding the Human Brain$$x0
000172763 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000172763 9131_ $$0G:(DE-HGF)POF2-89574$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vTheory, modelling and simulation$$x1
000172763 9141_ $$y2014
000172763 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000172763 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000172763 980__ $$aposter
000172763 980__ $$aVDB
000172763 980__ $$aI:(DE-Juel1)INM-6-20090406
000172763 980__ $$aI:(DE-Juel1)IAS-6-20130828
000172763 980__ $$aUNRESTRICTED
000172763 981__ $$aI:(DE-Juel1)IAS-6-20130828
000172763 981__ $$aI:(DE-Juel1)IAS-6-20130828