001     172837
005     20240711113542.0
024 7 _ |a 10.1088/0029-5515/54/1/013011
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000329427100015
|2 WOS
024 7 _ |a 2128/31909
|2 Handle
037 _ _ |a FZJ-2014-06274
082 _ _ |a 530
100 1 _ |a Joffrin, E.
|0 P:(DE-HGF)0
|b 0
|e Corresponding Author
245 _ _ |a First scenario development with the JET new ITER-like wall
260 _ _ |a Vienna
|c 2014
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1664342232_12652
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the recent JET experimental campaigns with the new ITER-like wall (JET-ILW), major progress has been achieved in the characterization and operation of the H-mode regime in metallic environments: (i) plasma breakdown has been achieved at the first attempt and X-point L-mode operation recovered in a few days of operation; (ii) stationary and stable type-I ELMy H-modes with βN ~ 1.4 have been achieved in low and high triangularity ITER-like shape plasmas and are showing that their operational domain at H = 1 is significantly reduced with the JET-ILW mainly because of the need to inject a large amount of gas (above 1022 D s−1) to control core radiation; (iii) in contrast, the hybrid H-mode scenario has reached an H factor of 1.2–1.3 at βN of 3 for 2–3 s; and, (iv) in comparison to carbon equivalent discharges, total radiation is similar but the edge radiation is lower and Zeff of the order of 1.3–1.4. Strong core radiation peaking is observed in H-mode discharges at a low gas fuelling rate (i.e. below 0.5 × 1022 D s−1) and low ELM frequency (typically less than 10 Hz), even when the tungsten influx from the diverter is constant. High-Z impurity transport from the plasma edge to the core appears to be the dominant factor to explain these observations. This paper reviews the major physics and operational achievements and challenges that an ITER-like wall configuration has to face to produce stable plasma scenarios with maximized performance.
536 _ _ |a 135 - Plasma-wall interactions (POF2-135)
|0 G:(DE-HGF)POF2-135
|c POF2-135
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Baruzzo, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beurskens, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bourdelle, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 4
|u fzj
700 1 _ |a Bucalossi, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Buratti, P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Calabro, G.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Challis, C. D.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Clever, M.
|0 P:(DE-Juel1)6806
|b 9
700 1 _ |a Coenen, J.
|0 P:(DE-Juel1)2594
|b 10
|u fzj
700 1 _ |a Delabie, E.
|0 P:(DE-Juel1)129994
|b 11
|u fzj
700 1 _ |a Dux, R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Lomas, P.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a de la Luna, E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a de Vries, P.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Flanagan, J.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Frassinetti, L.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Frigione, D.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Giroud, C.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Groth, M.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Hawkes, N.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Hobirk, J.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Lehnen, M.
|0 P:(DE-Juel1)130087
|b 23
700 1 _ |a Maddison, G.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Mailloux, J.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Maggi, C. F.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Matthews, G.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Mayoral, M.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Meigs, A.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Neu, R.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Nunes, I.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Puetterich, T.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Rimini, F.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Sertoli, M.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Sieglin, B.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Sips, A. C. C.
|0 P:(DE-HGF)0
|b 36
700 1 _ |a van Rooij, G.
|0 P:(DE-HGF)0
|b 37
700 1 _ |a Voitsekhovitch, I.
|0 P:(DE-HGF)0
|b 38
773 _ _ |a 10.1088/0029-5515/54/1/013011
|g Vol. 54, no. 1, p. 013011 -
|0 PERI:(DE-600)2037980-8
|n 1
|p 013011
|t Nuclear fusion
|v 54
|y 2014
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/172837/files/364_EX11.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:172837
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)2594
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129994
913 1 _ |a DE-HGF
|b Energie
|l Kernfusion
|1 G:(DE-HGF)POF2-130
|0 G:(DE-HGF)POF2-135
|3 G:(DE-HGF)POF2
|2 G:(DE-HGF)POF2-100
|4 G:(DE-HGF)POF
|v Plasma-wall interactions
|x 0
913 2 _ |a DE-HGF
|b POF III
|l Forschungsbereich Energie
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Kernfusion
|x 0
914 1 _ |y 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21