000172845 001__ 172845
000172845 005__ 20210129214521.0
000172845 0247_ $$2doi$$a10.1038/ncomms6558
000172845 0247_ $$2WOS$$aWOS:000345913700003
000172845 0247_ $$2altmetric$$aaltmetric:2926559
000172845 0247_ $$2pmid$$apmid:25424343
000172845 0247_ $$2Handle$$a2128/24470
000172845 037__ $$aFZJ-2014-06279
000172845 082__ $$a500
000172845 1001_ $$0P:(DE-Juel1)145203$$aBouhassoune, Mohammed$$b0$$eCorresponding Author$$ufzj
000172845 245__ $$aQuantum well states and amplified spin-dependent Friedel oscillations in thin films
000172845 260__ $$aLondon$$bNature Publishing Group$$c2014
000172845 3367_ $$2DRIVER$$aarticle
000172845 3367_ $$2DataCite$$aOutput Types/Journal article
000172845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1417087939_32597
000172845 3367_ $$2BibTeX$$aARTICLE
000172845 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172845 3367_ $$00$$2EndNote$$aJournal Article
000172845 520__ $$aElectrons mediate many of the interactions between atoms in a solid. Their propagation in a material determines its thermal, electrical, optical, magnetic and transport properties. Therefore, the constant energy contours characterizing the electrons, in particular the Fermi surface, have a prime impact on the behaviour of materials. If anisotropic, the contours induce strong directional dependence at the nanoscale in the Friedel oscillations surrounding impurities. Here we report on giant anisotropic charge density oscillations focused along specific directions with strong spin-filtering after scattering at an oxygen impurity embedded in the surface of a ferromagnetic thin film of Fe grown on W(001). Utilizing density functional theory, we demonstrate that by changing the thickness of the Fe films, we control quantum well states confined to two dimensions that manifest as multiple flat energy contours, impinging and tuning the strength of the induced charge oscillations which allow to detect the oxygen impurity at large distances (≈50 nm).
000172845 536__ $$0G:(DE-HGF)POF2-424$$a424 - Exploratory materials and phenomena (POF2-424)$$cPOF2-424$$fPOF II$$x0
000172845 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000172845 7001_ $$0P:(DE-Juel1)131065$$aZimmermann, Bernd$$b1$$ufzj
000172845 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Phivos$$b2$$ufzj
000172845 7001_ $$0P:(DE-Juel1)131042$$aWortmann, Daniel$$b3$$ufzj
000172845 7001_ $$0P:(DE-Juel1)130612$$aDederichs, Peter H.$$b4$$ufzj
000172845 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
000172845 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6$$ufzj
000172845 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms6558$$gVol. 5, p. 5558$$p5558$$tNature Communications$$v5$$x2041-1723$$y2014
000172845 8564_ $$uhttps://juser.fz-juelich.de/record/172845/files/FZJ-2014-06279.pdf$$yOpenAccess
000172845 909CO $$ooai:juser.fz-juelich.de:172845$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145203$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131065$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130823$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131042$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130612$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000172845 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000172845 9132_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bPOF III$$lForschungsbereich Energie$$vFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$x0
000172845 9131_ $$0G:(DE-HGF)POF2-424$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vExploratory materials and phenomena$$x0
000172845 9141_ $$y2014
000172845 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000172845 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000172845 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000172845 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000172845 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10
000172845 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000172845 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000172845 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000172845 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000172845 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000172845 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000172845 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000172845 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000172845 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000172845 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000172845 920__ $$lyes
000172845 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000172845 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000172845 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x2
000172845 980__ $$ajournal
000172845 980__ $$aVDB
000172845 980__ $$aUNRESTRICTED
000172845 980__ $$aI:(DE-Juel1)IAS-1-20090406
000172845 980__ $$aI:(DE-Juel1)PGI-1-20110106
000172845 980__ $$aI:(DE-Juel1)PGI-2-20110106
000172845 9801_ $$aFullTexts
000172845 981__ $$aI:(DE-Juel1)PGI-1-20110106
000172845 981__ $$aI:(DE-Juel1)PGI-2-20110106